
Deep Multi-Agent Reinforcement Learning for
Decentralized Continuous Cooperative Control

Christian Schroeder de Witt* 1 Bei Peng* 2 Pierre-Alexandre Kamienny 2 Philip Torr 1 Wendelin Böhmer 2

Shimon Whiteson 2

Abstract

Deep multi-agent reinforcement learning (MARL)
holds the promise of automating many real-world
cooperative robotic manipulation and transporta-
tion tasks. Nevertheless, decentralised cooper-
ative robotic control has received less attention
from the deep reinforcement learning community,
as compared to single-agent robotics and multi-
agent games with discrete actions. To address this
gap, this paper introduces Multi-Agent Mujoco,
an easily extensible multi-agent benchmark suite
for robotic control in continuous action spaces.
The benchmark tasks are diverse and admit eas-
ily configurable partially observable settings. In-
spired by the success of single-agent continuous
value-based algorithms in robotic control, we also
introduce COMIX, a novel extension to a com-
mon discrete action multi-agent Q-learning algo-
rithm. We show that COMIX significantly out-
performs state-of-the-art MADDPG on a partially
observable variant of a popular particle environ-
ment and matches or surpasses it on Multi-Agent
Mujoco. Thanks to this new benchmark suite and
method, we can now pose an interesting question:
what is the key to performance in such settings,
the use of value-based methods instead of pol-
icy gradients, or the factorisation of the joint Q-
function? To answer this question, we propose
a second new method, FacMADDPG, which fac-
tors MADDPG’s critic. Experimental results on
Multi-Agent Mujoco suggest that factorisation is
the key to performance.

1Dept. of Engineering Science, University of Oxford,
United Kingdom 2Dept. of Computer Science, Univer-
sity of Oxford, United Kingdom. *: Equal Contribution.
Correspondence to: Christian Schroeder de Witt <chris-
tian.schroeder@stcatz.ox.ac.uk>.

1. Introduction
While reinforcement learning (RL) has shown promise in
learning optimal control policies for a variety of single-
agent robot control problems, ranging from idealised multi-
joint simulations (Todorov et al., 2012; Gu et al., 2016;
Haarnoja et al., 2018) to complex grasping control problems
(Kalashnikov et al., 2018; Andrychowicz et al., 2020), many
real-world robot control tasks can be naturally framed as
multiple decentralised collaborating agents. Cooperative
manipulation tasks arise in autonomous aerial construction
(Augugliaro et al., 2013; 2014), industrial manufacturing
(Caccavale & Uchiyama, 2008), and agricultural robotics
(Shamshiri et al., 2018) and have so far received compara-
tively little attention from the deep RL community.

Cooperative robotics present a number of challenges when
compared to many conventional multi-agent tasks. For
example, unlike in established multi-agent benchmarks,
such as StarCraft II (Vinyals et al., 2017; Samvelyan et al.,
2019), robotic actuators are usually continuous, so learn-
ing algorithms must scale to large continuous joint action
spaces. Furthermore, such tasks are often partially ob-
servable, which arises from varying sensory equipment,
included limited fields of view, together with communi-
cation constraints due to latency, power or environmental
limitations (Ong et al., 2009). In fact, many such applica-
tions require fully decentralised policies for safety reasons,
as communication cannot be guaranteed under all circum-
stances (Takadama et al., 2003).

Even when execution must be decentralised, deep reinforce-
ment learning policies are typically trained in a centralised
fashion in a simulator or laboratory. The framework of
Centralised Training with Decentralised Execution (CTDE)
(Oliehoek et al., 2008; Kraemer & Banerjee, 2016) allows
policy training to exploit extra information that is not avail-
able during execution in order to accelerate learning (Lowe
et al., 2017; Foerster et al., 2018; Rashid et al., 2018).

Although some multi-agent benchmark environments for
continuous control exist (Leibo et al., 2017; Liu et al., 2019),
few environments specialise in cooperative control and even
fewer model partial observability. Moreover, existing bench-

ar
X

iv
:2

00
3.

06
70

9v
2

 [
cs

.L
G

]
 1

8
M

ar
 2

02
0

Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control

marks, like the popular Multi-agent Particle Environment
(Leibo et al., 2017), are not complex enough to meaning-
fully compare methods intended for robotic control. After
performing a comprehensive search, we decided to intro-
duce Multi-Agent Mujoco, a novel benchmark that fits our
requirements of being a diverse, publicly available, partially
observable cooperative robotics simulation that effectively
captures the nature of cooperative robotic manipulation
tasks.

Starting from the popular fully observable single-agent
robotic control suite Mujoco (Todorov et al., 2012) included
with OpenAI Gym (Brockman et al., 2016), we decompose
single robots into individual segments controlled by dif-
ferent agents. We introduce partial observability during
execution by allowing the user to limit the observation dis-
tance within the model graph formed by joints and limbs,
as well as allowing fine-grained control over which seg-
ment attributes may be observed at different distance levels.
Multi-Agent Mujoco is available as open-source software.

While there is a diverse portfolio of multi-agent algorithms
for cooperative tasks with discrete action spaces (Foerster
et al., 2018; Rashid et al., 2018; Schroeder de Witt et al.,
2019), decentralised continuous control algorithms have
been largely limited to deep deterministic policy gradient
approaches (Lowe et al., 2017). Single-agent Q-learning ap-
proaches to continuous control exist, but the involved greedy
action maximisation usually requires strong constraints on
the functional form of the Q-values (Gu et al., 2016; Amos
et al., 2017) or an approximate maximisation procedure
based on search heuristics (Kalashnikov et al., 2018). Nei-
ther approach scales well when joint action spaces are large
and values poorly approximated by constrained functions, as
might be expected in cooperative multi-agent robotic tasks.

To this end, we introduce a novel Q-learning algorithm,
COMIX, that employs a decentralisable joint action-value
function with a per-agent factorisation (Rashid et al., 2018).
This allows the application of the cross-entropy method
(Kalashnikov et al., 2018) for greedy action maximisation
on a per-agent basis, circumventing scaling issues related to
large joint action spaces. Importantly, we find that COMIX
significantly outperforms the state-of-the-art MADDPG in
a partially observable variant of a Continuous Predator-Prey
toy environment (Lowe et al., 2017). We then benchmark
both on Multi-Agent Mujoco, which is a more realistic
decentralisable cooperative robotic control setting. We find
that COMIX outperforms MADDPG in two of the three
scenarios tested and performs similarly to MADDPG in the
third one. These results suggest that continuous Q-learning
is a compelling alternative to deterministic policy gradients
for decentralised cooperative multi-agent tasks.

Thanks to this new benchmark suite and method, we can
now pose an interesting question: what is the key to per-

formance in such settings, the use of value-based methods
instead of policy gradients, or the factorisation of the joint
Q-function? To answer this question, we introduce Factored
MADDPG (FacMADDPG), a novel variant of MADDPG
where the centralised critic is factored into individual critic
networks similarly to COMIX. We find that, interestingly,
FacMADDPG performs similarly to COMIX in the Predator-
Prey toy environment, as well as on a single Multi-Agent
Mujoco environment. This suggests that it is indeed the
value-function factorisation that is key to performance in
tasks such as these.

2. Background
We consider a fully cooperative multi-agent task in which
a team of cooperative agents choose sequential actions in a
stochastic, partially observable environment. It can be mod-
eled as a decentralised partially observable Markov decision
process (Dec-POMDP Oliehoek et al., 2016), defined by
a tuple 〈N ,S,U , P, r,Z, O, ρ, γ〉. Here N := {1, . . . , N}
denotes the set of N agents and s ∈ S describes the dis-
crete or continuous state of the environment. The initial
state s0 ∼ ρ is drawn from distribution ρ, and at each
time step t, all agents a ∈ N choose simultaneously dis-
crete or continuous actions uat ∈ U , yielding the joint
action ut := {uat }Na=1 ∈ UN . After executing the joint
action ut in state st, the next state st+1 ∼ P (st,ut) is
drawn from transition kernel P and the collaborative reward
rt = r(st,ut) is returned to the team.

In a Dec-POMDP, the true state of the environment cannot
be directly observed by the agents. Each agent a ∈ N
draws an individual observation zat ∈ Z, zt := {zat }Na=1,
from the observation kernel O(st, a). The history of an
agent’s observations and actions is denoted τat ∈ Tt :=
(Z × U)t × Z , and the set of all agents’ histories τt :=
{τat }Na=1. Agent a chooses its actions with a decentralised
policy uat ∼ π(·|τat) based only on its individual history.
The collaborating team of agents aim to learn a joint policy
π(u|τt) :=

∏N
a=1 π

a(ua|τat) that maximises their expected
discounted return, E[

∑∞
t=0 γ

trt]. This joint policy induces a
joint action-value functionQπ which estimates the expected
discounted return when the agents take joint action ut with
histories τt in state st and then follow some joint policy π:

Qπ(st, τt,ut) := E
[∞∑
i=0

γirt+i

∣∣∣ sk+1∼P (sk,uk)

zk+1∼O(sk+1,·)
uk+1∼π(·|τk+1)

,∀k ≥ t
]

= rt + γE
[
Qπ(st+1, τt+1,ut+1)

∣∣ st+1∼P (st,ut)

ut+1∼π(·|τt+1)

]
, (1)

where γ ∈ [0, 1) is a discount factor.

2.1. Deep Q-Learning

Deep Q-Network (DQN Mnih et al., 2015) uses a deep
neural network to estimate the action-value function,

Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control

Q(s,zt,u; θ) ≈ maxπ Q
π(s, τ ,u), where θ are the param-

eters of the network. For the sake of simplicity, we restrict
us here to feed-forward networks, which condition on the
last observations zat , rather than the entire agent histories τt.
The network parameters θ are trained by gradient descent
on the mean squared regression loss:

LDQN

[θ] := ED
[(
yDQN
t −Q(st, zt,ut; θ)

)2]
, (2)

yDQN
t := rt + γmax

u′
Q(st+1, zt+1,u

′; θ−) ,

where the expectation is estimated with transitions
(st, zt,ut, rt, st+1, zt+1) ∼ D sampled from an experi-
ence replay buffer D (Lin, 1992b). The use of replay buffer
reduces correlations in the observation sequence. To further
stabilise learning, θ− denotes parameters of a target network
that are only periodically copied from the most recent θ.

2.2. Centralised Training with Decentralised Execution

A simple and natural approach to solving Dec-POMDPs is
to let each agent a learn an individual action-value function
Qa independently, as in independent Q-learning (IQL Tan,
1993). IQL serves as a surprisingly strong benchmark in
both cooperative and competitive MARL tasks with discrete
actions (Tampuu et al., 2017). However, IQL has no con-
vergence guarantees since, as agents independently explore
and update their policies, the environment becomes nonsta-
tionary from each agent’s viewpoint. An alternative solution
is to employ centralised training with decentralised exe-
cution (CTDE Kraemer & Banerjee, 2016). CTDE allows
the learning algorithm to access all local action-observation
histories T and global state s, as well as share gradients and
parameters, but each agent’s executed policy can condition
only on its own action-observation history τa ∈ Tt.

2.3. VDN and QMIX

Value decomposition networks (VDN Sunehag et al., 2018)
and QMIX (Rashid et al., 2018) are two representative ex-
amples of value function factorisation (Koller & Parr, 1999)
that aim to efficiently learn a centralised but factored action-
value function. They both work in cooperative MARL tasks
with discrete actions, using CTDE. To ensure consistency
between the centralised and decentralised polices, VDN fac-
tors the joint action-value function Qtot(s, τ ,u;θ) into a
sum of individual action-value functions Qa(τa, ua; θa),1

one for each agent a, that condition only on individual
action-observation histories:

Qtot(s, τ ,u;θ) :=
N∑
a=1

Qa(τ
a, ua; θa). (3)

1Strictly speaking, each Qa is a utility function since by itself
it does not estimate an expected return. We refer to Qa as action-
value function for simplicity.

By contrast, QMIX represents the joint action-value func-
tion as a monotonic function of individual action-value func-
tions. The main insight is that, to extract decentralised poli-
cies that are consistent with their centralised counterparts,
it suffices to constrain Qtot to be monotonic in each Qa:
∂Qtot
∂Qa

≥ 0,∀a ∈ N . Thus, in QMIX, the joint action-value
function Qtot is represented as:

Qtot(s, τ ,u;θ, φ) := fφ
(
s, {Qa(τa, ua; θa)}Na=1

)
, (4)

where fφ is a mixing network that takes as input the agent
network outputs Qa and mixes them monotonically, produc-
ing the values of Qtot. Monotonicity can be guaranteed by
non-negative mixing weights. These weights are generated
by separate hypernetworks (Ha et al., 2016), parameterised
by φ, which condition on the full state s. This allows it to
learn different monotonic mixing weights in each state.

In both methods, the loss function is analogous to the stan-
dard DQN loss of (2), where Q is replaced by Qtot. During
execution, each agent selects actions greedily with respect
to its own Qa.

2.4. MADDPG

Multi-agent deterministic policy gradient (MADDPG Lowe
et al., 2017) is an actor-critic method that works in both co-
operative and competitive MARL tasks with discrete or con-
tinuous action spaces. MADDPG was originally designed
for the more general case of partially observable stochastic
games (Kuhn, 1953). Here we discuss a version specific to
Dec-POMDPs and consider continuous actions. We assume
each agent a has a deterministic policy µa, parameterised by
θa, with µ(τ ;θ) := {µa(τa; θa)}Na=1. MADDPG learns a
centralised critic Qµa (s,u;φa) for each agent a that condi-
tions on the full state s and the joint actions u of all agents.
The policy gradient for θa is:

∇θaLµ[θa] := −ED
[
∇θaµa(τat ;θa)∇uaQµa(st,ûat ;φa)

∣∣
ua=µa(τat)

]
,

where ûat := {u1t , . . . , ua−1t , ua, ua+1
t , . . . , uNt } and

st,ut, τt are sampled from a replay buffer D. The cen-
tralised action-value function Qµa of each agent a is trained
by minimising the following loss

LDPG
[φa] := ED

[(
yat −Qµa

(
st,ut;φ

a
))2]

, (5)

yat := rt + γ Qµa
(
st+1,µ(τt+1;θ

′);φ′a
)
.

where transitions are sampled from a replay buffer D (Lin,
1992a) and θ′ and φ′a are target-network parameters.

3. Multi-Agent Mujoco
Multi-Agent Mujoco is a novel benchmark for decentralised
cooperative continuous multi-agent robotic control. Start-
ing from the popular fully observable single-agent robotic

Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control

zxy

1 2

2 1

1

2

3

y

xz

y

xz

1

2

3

4

5

6
y

xz

1

2

3

4

5

6

5

6

1

2

3

4

7

8

A) B) C) D)

E)

F)

G)

H) I)

3

26

15

7

48

5

6

1

2

3

4

7

8

xyz

xyz

z,y

x

-x,-z,y

-y-y

-y-z

[211],-yz

yz

[2-11],yz

1,2

3

 45,6

7

 89,10

11

x,z,y

12,
13

14

15,
16

17

z

Hinge joint
(global)

Legend

Slide joint
(global)

xy

Hinge joint
(fixed)

Hinge joint

id
axis

zz

zz

xy

xy

-xy -xy

xyz

xyz

J)

4

5

6

1

2

3

y

xz

Figure 1. Agent partitionings for Multi-Agent Mujoco environments: A) 2-Agent Swimmer [2x1], B) 3-Agent Hopper [3x1], C)
2-Agent HalfCheetah [2x3], D) 6-agent HalfCheetah [6x1], E) 2-Agent Humanoid and 2-Agent HumanoidStandup (each [1x9,1x8]), F)
2-Agent Walker G) 2-Agent Reacher [2x1], H) 2-Agent Ant [2x4], I) 2-Agent Ant Diag [2x4], J) 4-Agent Ant [4x2]. Colours indicate
agent partitionings. Each joint corresponds to a single controllable motor. Split partitions indicate shared body segments. Square brackets
indicate [(number of agents) x (joints per agent)]. Joint IDs are in order of definition in the corresponding OpenAI Gym XML asset files
(Brockman et al., 2016). Global joints indicate degrees of freedom of the center of mass of the composite robotic agent.

Mujoco (Todorov et al., 2012) control suite included with
OpenAI Gym (Brockman et al., 2016), we create novel
scenarios in which multiple agents have to solve a task co-
operatively. This is achieved by first representing a given
single robotic agent as a body graph, where vertices (joints)
are connected by adjacent edges (body segments), as shown
in Figure 1. We then partition the body graph into disjunct
sub-graphs, one for each agent, each of which contains one
or more joints that can be controlled.

4

1

3

2

4

1

3

2

4

1

3

2
1) 2) 3)

Figure 2. Observations by distance for 3-Agent Hopper (as
seen from agent 1). 1) corresponds to joints and body parts at
zero graph distance from agent 1, 2) corresponds to joints and body
parts observable at unit graph distance and 3) at two unit graph
distances.

Hence, each agent’s action space in Multi-Agent Mujoco is
given by the joint action space over all motors controllable
by that agent. For example, for the agent corresponding to
the green partition in 2-Agent HalfCheetah (Figure 1, C)
consists of three joints (joint ids 1,2 and 3) and four adjacent

body segments. Each joint has action space [−1, 1], hence
the joint action space of this agent Ajoint = [−1, 1]3.

For each agent a, observations are constructed in a two-
stage process. First, we infer which body segments and
joints are observable by agent a. Each agent can always
observe all joints within its own sub-graph. A configurable
parameter k ≥ 0 determines the maximum graph distance
to the agent’s subgraph at which joints are observable. Body
segments directly attached to observable joints are them-
selves observable. The agent observation is then given by
a fixed order concatenation of the representation vector of
each observable graph element. Depending on configura-
tion, representation vectors may include attributes such as
position, velocity and external body forces.

Restricting both the observation distance k, as well as limit-
ing the set of observable element categories imposes partial
observability. However, task goals remain unchanged from
the single-agent variants (see Table 1 in the Appendix), ex-
cept that the goals must be reached collaboratively by multi-
ple agents: we simply repurpose the original single-agent
reward signal as a team reward signal.

4. COMIX and FacMADDPG
COMIX. Q-learning has shown considerable success in
multi-agent settings with discrete action spaces (Rashid
et al., 2018). However, performing greedy action selection
in Q-learning requires evaluating argmaxuQtot(s, τ ,u),

Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control

where Qtot is the joint state-action value function. In dis-
crete action spaces, this operation can be performed ef-
ficiently through enumeration unless the action space is
extremely large. In continuous action spaces, however,
enumeration is impossible. Hence, existing continuous Q-
learning approaches in single-agent settings either impose
constraints on the form of Q-value to make maximisation
easy (Gu et al., 2016; Amos et al., 2017), at the expense
of estimation bias, or perform greedy action selection only
in approximation (Kalashnikov et al., 2018). Neither ap-
proach scales easily to the large joint action spaces inherent
to multi-agent settings, as 1) the joint action space grows
exponentially in the number of agents, and 2) training Qtot
to select maximal actions becomes impractical when there
are many agents.

This highlights the importance of learning a cen-
tralised but factored Qtot. To factor large joint action
spaces efficiently in a decentralisable fashion, COMIX
models a joint state-action value function QMIX =
f
(
s,Q1(τ

1, u1; θ1), . . . , QN (τN , uN ; θN)
)
, where Qa are

per-agent utility functions used for greedy action selection.
Similarly to QMIX (Rashid et al., 2018), COMIX imposes
a monotonicity constraint on f to keep joint action selec-
tion compatible with action selection from individual utility
functions.

COMIX performs greedy selection of actions ua with re-
spect to utility functions Qa(τa, ua; θa) for each agent a
using the cross-entropy method (CEM De Boer et al., 2005),
a sampling-based derivative-free heuristic search method
that has been successfully used to find approximate max-
ima of nonconvex Q-networks in a number of single-agent
robotic control tasks (Kalashnikov et al., 2018). The cen-
tralised but factoredQMIX allows us to use CEM to sample
actions for each agent independently and to use the individ-
ual utility function Qa to guide the selection of maximal
actions. We rely on CEM instead of other continuous Q-
learning approaches (Gu et al., 2016; Amos et al., 2017)
because of its empirical success (see Section 5).

CEM iteratively draws a batch of N random samples from a
candidate distribution Dk, e.g., a Gaussian, at each iteration
k. The bestM < N samples are then used to fit a new Gaus-
sian distribution Dk+1, and this process repeats K times.
For COMIX, we use a CEM hyperparameter configuration
similar to Qt-Opt (Kalashnikov et al., 2018), whereN = 64,
M = 6, and K = 2.2 Gaussian distributions are initialised
with mean µ = 0 and standard deviation σ = 1. Algorithm
2 outlines the full CEM process for COMIX.

FacMADDPG. Learning a centralised critic conditioning
on a large joint agent observation space can be difficult
(Iqbal & Sha, 2019). We introduce FacMADDPG, a novel

2We empirically find 2 iterations to suffice.

variant of MADDPG with an agent-specific factorisation
that facilitates the learning of a centralised critic in Dec-
POMDPs. In FacMADDPG, all agents share a single cen-
tralised critic that is factored as QµT =

gφ
(
s,Q1(τ

1, u1, . . . uN ; θ1), . . . ,

QN (τN , u1, . . . , uN ; θN)
) (6)

where g is a function represented by a monotonic mixing
network. Although the monotonicity requirement on gφ is
no longer required as the critic is not used for greedy action
selection, FacMADDPG does impose monotonicity on gφ
in order to keep the factorisation comparable to the one em-
ployed by COMIX. We find that FacMADDPG significantly
outperforms an ablation without monotonicity constraints
(see Appendix 10).

5. Experimental Setup
Partially Observable Continuous Predator-Prey. The
mixed simple tag environment (Figure 3) introduced by
Leibo et al. (2017) is a variant of the classic predator-prey
game. Three slower cooperating circular agents (red), each
with continuous movement action spaces ua ∈ R2, must
catch a faster circular prey (green) on a randomly generated
two-dimensional toroidal plane with two large landmarks
blocking the way.

To obtain a purely cooperative environment, we replace
the prey’s policy by a hard-coded heuristic, that, at any
time step, moves the prey to the sampled position with
the largest distance to the closest predator. If one of the
cooperative agents collides with the prey, a team reward

Algorithm 1 Algorithmic description of COMIX.
The function CEM is defined in Appendix 10.

function COMIX
Initialise ReplayBuffer, θ, θ−, φ, φ−

for each training episode e do
s0, z0 ← EnvInit()
for t := 0 until t = T step 1 do
ut ← CEM(Q1, . . . , QN , τ

1
t , . . . , τ

N
t)

〈st+1, zt+1, rt〉 ← EnvStep(ut)
ReplayBuffer← 〈st,ut, zt, rt, st+1, zt+1〉

end for
{〈si,ui, zi, ri, s′i, z′i〉}bi=1 ∼ ReplayBuffer
yi ← ri + γmax

u′i

Qtot(s
′
i, z
′
i,u
′
i;θ
−, φ−), ∀i

L ←
b∑
i=1

(
yi −Qtot(si, zi,ui;θ, φ)

)2
θ ← θ − α∇θL
φ← φ− α∇φL

end for
end function

Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control

predator 1

predator 2

predator 3

prey

Figure 3. Continuous Predator-Prey. Left: Top-down view of
toroidal plane, with predators (red), prey (green) and obstacles
(grey). Right: Illustration of the prey’s avoidance heuristic. Obser-
vation radii of both agents and prey are indicated.

of +10 is emitted; otherwise, no reward is given. In the
original simple tag environment, each agent can observe the
relative positions of other two agents, the relative position
and velocity of the prey, and the relative positions of the
landmarks. This means each agent’s private observation
provides an almost complete representation of the true state
of the environment.

To introduce partial observability to the environment, we
add an agent view radius, which restricts the agents from
receiving information about other entities (including all
landmarks, the other two agents, and the prey) that are out
of range. Specifically, we set the value of view radius such
that the agents can only observe other agents roughly 60%
of the time. We open-source the full set of multi-agent
particle environments with added partial observability.3

Multi-Agent Mujoco. All Multi-Agent Mujoco environ-
ments are configured according to the default configuration
of Multi-Agent Mujoco, where each agent can observe both
velocity and position of its own body parts and positions
only at graph distances greater than zero. We set maximum
observation distances to k = 2 for 2-Agent HalfCheetah
and 3-Agent Hopper, k = 1 for 2-Agent Walker. Default
team reward signals are used (see Table 1 in the Appendix).

Ablations. We also introduce a number of novel ablations
in order to study diverse aspects of our method in isolation:
1) COVDN: we factor the joint action-value function Qtot
into a sum of individual action-value functions Qa as in
VDN, and use CEM to learnQa for each agent a, 2) COMIX-
NAF: we factor Qtot assuming mixing monotonicity as in
QMIX, and add quadratic function constraints on each Qa
based on Normalized Advantage Functions (NAF Gu et al.,
2016), and 3) COVDN-NAF: we represent Qtot assuming
additive mixing as in VDN, and add quadratic function
constraints on Qa based on NAF.

3https://github.com/schroederdewitt/
multiagent_mujocohttps://github.com/
schroederdewitt/multiagent-particle-envs/

Evaluation Procedure. We evaluate each method’s per-
formance using the following procedure: for each run of a
method, we pause training every fixed number of timesteps
(2000 timesteps for Continuous Predator-Prey and 4000
timesteps for Multi-Agent Mujoco) and run 10 independent
episodes with each agent performing greedy decentralised
action selection. The mean value of these 10 episode returns
are then used to evaluate the performance of learned policies.
See Appendix 9 for further experimental details.

6. Empirical Results
Figure 4 shows that COMIX significantly outperforms
MADDPG on Continuous Predator-Prey (Figure 4a), both
in terms of absolute performance and learning speed. On
Multi-Agent Mujoco, COMIX outperforms MADDPG in
absolute terms on 2-Agent Walker scenario (Figure 4c),
while MADDPG cannot learn it effectively. On 2-Agent
HalfCheetah (Figure 4b), COMIX outperforms MADDPG
in absolute terms and has lower limit variance. On 3-Agent
Hopper (Figure 4d), COMIX performs similarly to MAD-
DPG but has significantly lower variance across seeds.

Despite the ability to represent a richer form of coordination
with its functionally unconstrained critic (Son et al., 2019),
in our experiments MADDPG is not able to outperform
COMIX, which uses a monotonically constrained mixing
network.

We hypothesise that this is because MADDPG’s critic di-
rectly conditions on the joint observations and actions of all
agents. COMIX, by contrast, represents the optimal joint
action-value function using a monotonic mixing function
of per-agent utilities. Early in training, MADDPG’s critic
estimator may thus be more prone to picking up non-trivial
suboptimal coordination patterns than COMIX. Such local
minima might be hard to subsequently escape.

By contrast, the monotonicity constraint on COMIX’s mix-
ing network may smooth the optimisation landscape, al-
lowing COMIX to avoid suboptimal local minima more
efficiently than MADDPG. In other words, COMIX’s net-
work architecture imposes a suitable prior that captures the
forms of additive-monotonic coordination required to solve
these tasks.

These results an interesting question: What is the key to per-
formance in such settings, the use of value-based methods
instead of policy gradients, or the choice of factorisation of
the joint Q-value function? Previous work on this question
(Bescuca, 2019) is inconclusive due to the confounder that
the policy gradient methods studied (COMA and Central-V
(Foerster et al., 2018)) are on-policy, while the respective Q-
learning method, QMIX (Rashid et al., 2018), is off-policy
with experience replay (Lin, 1992a).

https://github.com/schroederdewitt/multiagent_mujoco
https://github.com/schroederdewitt/multiagent_mujoco
https://github.com/schroederdewitt/multiagent-particle-envs/
https://github.com/schroederdewitt/multiagent-particle-envs/

Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control

(a) (b)

(c) (d)

Figure 4. Mean episode return on (a) Continuous Predator-Prey, (b) 2-Agent HalfCheetah [2x3], (c) 2-Agent Walker [2x3], and (d)
3-Agent Hopper [3x1]. The mean across 10 seeds is plotted and the 95% confidence interval is shown shaded.

To address this question, we evaluate the performance of
FacMADDPG, which factors MADDPG’s critic in the same
manner as COMIX’s joint Q-value function. We find that
FacMADDPG performs similarly to COMIX on both Con-
tinuous Predator-Prey and all three Multi-Agent Mujoco
tasks (see Figure 4b-4d). As both COMIX and FacMAD-
DPG are off-policy algorithms, this shows that the factorisa-
tion of the joint Q-value function is the key to performance
in these decentralised continuous cooperative multi-agent
tasks.

Ablations. We find that COVDN performs drastically
worse than both COMIX and MADDPG across all Multi-
Agent Mujoco tasks (shown in Figure 4a-4d), demonstrating
the necessity of the non-linear mixing of agent utilities and
conditioning on the state information in order to achieve
competitive performance in such tasks.

Figure 5 shows that, compared to its ablations COVDN-NAF
and COMIX-NAF, COMIX is noticeably more stable on
Continuous Predator-Prey. COVDN-NAF has sharp drops
in performance at the late stage of training, while COMIX-

Figure 5. Mean episode return on Continuous Predator-Prey com-
paring COMIX and ablations. The mean across 10 seeds is plotted
and the 95% confidence interval is shown shaded.

Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control

NAF converges significantly slower than COMIX and is
much more varied across seeds. This demonstrates that
greedy action selection based on CEM heuristic search is
both more stable and performant than simple exact methods
in practice.

Finally, we evaluate an ablation of FacMADDPG without
the monotonicity constraint. We find that this method does
not learn at all in Continuous Predator-Prey, and performs
significantly worse than both COMIX and MADDPG on
2-Agent HalfCheetah (see Figure 7 in Appendix 10). This
suggests monotonicity matters.

7. Related Work
While several MARL benchmarks with continuous action
spaces have been released, few are simultaneously diverse,
fully cooperative, decentralisable and admit partial observ-
ability. The Multi-Agent Particle suite (Lowe et al., 2017)
features a few decentralisable tasks in a fully observable
planar point mass toy environment. Presumably due to its
focus on real-world robotic control, RoboCup Soccer Simu-
lation (Kitano et al., 1997; Stone & Sutton, 2001; Riedmiller
et al., 2009) does not currently feature an easily configurable
software interface for MARL, nor suitable AI-controlled
benchmark opponents. Liu et al. (2019) introduce MuJoCo
Soccer Environment, a multi-agent soccer environment with
continuous simulated physics that cannot be used in a purely
cooperative setting and does not admit partial observability.

Of the existing environments most similar but not as diverse
as Multi-Agent Mujoco, Wang et al. (2018) introduce two
decomposed Mujoco environments, Centipede and Snakes,
the latter of which being similar to Multi-Agent Mujoco’s
2-Agent Swimmer. Ackermann et al. (2019) evaluate on
a single environment that is similar to a particular config-
uration of 2-Agent Ant, but do not consider tasks across
different numbers of agents and Mujoco scenarios.

A number of multi-agent variants of deep deterministic
policy gradients (Lillicrap et al., 2015; Lowe et al., 2017)
have been proposed for MARL in continuous action spaces:
MADDPG-M (Kilinc & Montana, 2018) uses communica-
tion channels in order to overcome observation noise in par-
tially observable settings. By contrast, we consider fully de-
centralised settings without communication. R-MADDPG
(Wang et al., 2019) equips MADDPG with recurrent policies
and critics in a partially observable setting with communi-
cation. As we are primarily interested in the relative perfor-
mance between policy gradients and continuous Q-learning
approaches, we employ feed-forward network architectures
to avoid the complexities of recurrent network training.

NerveNet (Wang et al., 2018) achieves policy transfer across
robotic agents with different numbers of repeated units. Un-
like COMIX, NerveNet is not fully decentralisable as it re-

quires explicit communication channels. Iqbal & Sha (2019)
introduce MAAC, a variant of MADDPG for stochastic
games, in which the centralised critics employ an attention
mechanism on top of agent-specific observation embeddings.
Unlike FacMADDPG, MAAC explicitly addresses settings
where agents receive both individual and team rewards.

Besides VDN and QMIX, QTRAN (Son et al., 2019) al-
lows for arbitrary utility function mixings by introducing
auxiliary losses that align utility function maxima with max-
ima of the joint Q-function. Despite being more expressive,
QTRAN does not scale well to complex environments, such
as StarCraft II (Samvelyan et al., 2019; Bohmer et al., 2019)
and may not generalise well to continuous action spaces due
to the point-wise nature of its auxiliary losses.

Continuous Q-learning has so far been studied almost exclu-
sively in the fully observable single-agent setting. Two dis-
tinct approaches to making greedy action selection tractable
have emerged: Both Normalized Advantage Functions
(NAF Gu et al., 2016) and Partially Input-Convex Neural
Networks (PICNN Amos et al., 2017) constrain the func-
tional form of the state-action value function approxima-
tor such as to guarantee an easily identifiable global max-
imum. In contrast, heuristic search approaches, such as
Cross-Entropy Maximisation (CEM Mannor et al., 2003),
forfeit global guarantees but allow for unconstrained Q-
learning approximators. CEM (Mannor et al., 2003) has
been used successfully in single-agent robotic simulations
(Kalashnikov et al., 2018). As for COMIX, we find that
ablations using NAF perform poorly (see section 5).

8. Conclusion
In order to stimulate research into decentralised coopera-
tive robotic control, we introduce a novel benchmark suite,
Multi-Agent Mujoco. Multi-Agent Mujoco consists of a di-
verse set of multi-agent tasks with continuous action spaces
and is easily extensible. We also introduce COMIX, a novel
Q-learning algorithm that factors the joint action space into
per-agent action spaces to overcome scalability problems in
continuous greedy action selection.

Our results show that COMIX performs competitively with,
or even outperforms, MADDPG both on a traditional bench-
mark environment, as well as on Multi-Agent Mujoco.
Futhermore, we introduce a second method FacMADDPG,
a novel variant of MADDPG where the centralised critic is
factored into individual critic networks similarly to COMIX.

We find that, interestingly, FacMADDPG performs similarly
to COMIX in Predator-Prey toy environment, as well as on
a single Multi-Agent Mujoco environment. This shows that
the factoration of the jointQ-value is the key to performance
in decentralised continuous cooperative multi-agent tasks.

Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control

Future work will investigate the utility of recent amorti-
sation techniques for cross-entropy maximisation (Van de
Wiele et al., 2020) and the relationship between exploration
strategies in continuous Q-learning and deterministic policy
gradient approaches. We also plan to extend Multi-Agent
Mujoco to contain more challenging multi-agent environ-
ments composed of multiple robotic agents rather than de-
compositions of single robotic agents.

Acknowledgements

This project has received funding from the European Re-
search Council (ERC) under the European Unions Hori-
zon 2020 research and innovation programme (grant agree-
ment number 637713), the National Institutes of Health
(grant agreement number R01GM114311), EPSRC/MURI
grant EP/N019474/1 and the JP Morgan Chase Faculty Re-
search Award. This work is linked to and partly funded by
the project Free the Drones (FreeD) under the Innovation
Fund Denmark and Microsoft. It was also supported by
the Oxford-Google DeepMind Graduate Scholarship and a
generous equipment grant from NVIDIA.

References
Ackermann, J., Gabler, V., Osa, T., and Sugiyama,

M. Reducing overestimation bias in multi-agent do-
mains using double centralized critics. arXiv preprint
arXiv:1910.01465, 2019.

Amos, B., Xu, L., and Kolter, J. Z. Input convex neural
networks. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pp. 146–155.
JMLR. org, 2017.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz,
R., McGrew, B., Pachocki, J., Petron, A., Plappert, M.,
Powell, G., Ray, A., et al. Learning dexterous in-hand
manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020.

Augugliaro, F., Mirjan, A., Gramazio, F., Kohler, M., and
D’Andrea, R. Building tensile structures with flying
machines. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 3487–3492. IEEE,
2013.

Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn,
M., Mueller, M. W., Willmann, J. S., Gramazio, F.,
Kohler, M., and D’Andrea, R. The flight assembled
architecture installation: Cooperative construction with
flying machines. IEEE Control Systems Magazine, 34(4):
46–64, 2014.

Bescuca, M. Factorised critics in deep multi-agent reinforce-
ment learning. In Master Thesis, University of Oxford,
2019.

Bohmer, W., Kurin, V., and Whiteson, S. Deep coordination
graphs. arXiv preprint arXiv:1910.00091, 2019.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Caccavale, F. and Uchiyama, M. Cooperative Manipulators.
In Siciliano, B. and Khatib, O. (eds.), Springer Handbook
of Robotics, pp. 701–718. Springer Berlin Heidelberg,
2008.

Ciosek, K. and Whiteson, S. Expected policy gradients. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

De Boer, P.-T., Kroese, D. P., Mannor, S., and Rubinstein,
R. Y. A tutorial on the cross-entropy method. Annals of
operations research, 134(1):19–67, 2005.

Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. Counterfactual multi-agent policy gradients.
In Thirty-second AAAI conference on artificial intelli-
gence, 2018.

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. Con-
tinuous deep q-learning with model-based acceleration.
In International Conference on Machine Learning, pp.
2829–2838, 2016.

Ha, D., Dai, A., and Le, Q. V. Hypernetworks. arXiv
preprint arXiv:1609.09106, 2016.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
Conference on Machine Learning, pp. 1856–1865, 2018.

Iqbal, S. and Sha, F. Actor-attention-critic for multi-agent
reinforcement learning. In Chaudhuri, K. and Salakhut-
dinov, R. (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pp. 2961–2970,
Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,
A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., et al. Qt-opt: Scalable deep reinforcement
learning for vision-based robotic manipulation. arXiv
preprint arXiv:1806.10293, 2018.

Kilinc, O. and Montana, G. Multi-agent deep reinforce-
ment learning with extremely noisy observations. arXiv
preprint arXiv:1812.00922, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.,
and Matsubara, H. Robocup: A challenge problem for ai.
AI magazine, 18(1):73–73, 1997.

Koller, D. and Parr, R. Computing factored value functions
for policies in structured mdps. In Proceedings of IJCAI,
pp. 1332–1339, 1999.

Kraemer, L. and Banerjee, B. Multi-agent reinforcement
learning as a rehearsal for decentralized planning. Neuro-
computing, 190:82–94, 2016.

Kuhn, H. Extensive games and the problem of information.
Annals of Mathematics Studies, 28, 1953.

Leibo, J. Z., Zambaldi, V., Lanctot, M., Marecki, J.,
and Graepel, T. Multi-agent Reinforcement Learn-
ing in Sequential Social Dilemmas. arXiv preprint
arXiv:1702.03037, 2017.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Lin, L.-J. Reinforcement learning for robots using neural
networks. In Dissertation, Carnegie Mellon University,
1992a.

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Machine learning,
8(3-4):293–321, 1992b.

Liu, S., Lever, G., Merel, J., Tunyasuvunakool, S., Heess,
N., and Graepel, T. Emergent coordination through com-
petition. arXiv preprint arXiv:1902.07151, 2019.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P.,
and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Advances in
neural information processing systems, pp. 6379–6390,
2017.

Mannor, S., Rubinstein, R. Y., and Gat, Y. The cross entropy
method for fast policy search. In Proceedings of the 20th
International Conference on Machine Learning (ICML-
03), pp. 512–519, 2003.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Oliehoek, F. A., Spaan, M. T. J., and Nikos Vlassis. Optimal
and Approximate Q-value Functions for Decentralized
POMDPs. JAIR, 32:289–353, 2008.

Oliehoek, F. A., Amato, C., et al. A concise introduction to
decentralized POMDPs, volume 1. Springer, 2016.

Ong, S. C., Png, S. W., Hsu, D., and Lee, W. S. Pomdps
for robotic tasks with mixed observability. In Robotics:
Science and systems, volume 5, pp. 4, 2009.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen,
R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychow-
icz, M. Parameter space noise for exploration. arXiv
preprint arXiv:1706.01905, 2018.

Rashid, T., Samvelyan, M., Witt, C. S., Farquhar, G., Fo-
erster, J., and Whiteson, S. Qmix: Monotonic value
function factorisation for deep multi-agent reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 4292–4301, 2018.

Riedmiller, M., Gabel, T., Hafner, R., and Lange, S. Rein-
forcement learning for robot soccer. Autonomous Robots,
27(1):55–73, 2009.

Samvelyan, M., Rashid, T., de Witt, C. S., Farquhar, G.,
Nardelli, N., Rudner, T. G. J., Hung, C.-M., Torr, P. H. S.,
Foerster, J., and Whiteson, S. The StarCraft Multi-Agent
Challenge. CoRR, abs/1902.04043, 2019.

Schroeder de Witt, C., Foerster, J., Farquhar, G., Torr, P.,
Boehmer, W., and Whiteson, S. Multi-agent common
knowledge reinforcement learning. In Advances in Neu-
ral Information Processing Systems 32, pp. 9924–9935.
Curran Associates, Inc., 2019.

Shamshiri, R., Weltzien, C., Hameed, I., Yule, I., Grift,
T., Balasundram, S., Pitonakova, L., Ahmad, D., and
Chowdhary, G. Research and development in agricultural
robotics: A perspective of digital farming. International
Journal of Agricultural and Biological Engineering, 11:
1–14, 2018.

Son, K., Kim, D., Kang, W. J., Hostallero, D. E., and Yi, Y.
Qtran: Learning to factorize with transformation for co-
operative multi-agent reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 5887–5896,
2019.

Stone, P. and Sutton, R. S. Scaling reinforcement learning
toward RoboCup soccer. In Icml, volume 1, pp. 537–544.
Citeseer, 2001.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zam-
baldi, V., Jaderberg, M., Lanctot, M., Sonnerat, N., Leibo,
J. Z., Tuyls, K., and et al. Value-decomposition net-
works for cooperative multi-agent learning based on team
reward. In Proceedings of the 17th International Confer-
ence on Autonomous Agents and MultiAgent Systems, pp.
2085–2087. International Foundation for Autonomous
Agents and Multiagent Systems, 2018.

Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control

Takadama, K., Matsumoto, S., Nakasuka, S., and Shimo-
hara, K. A reinforcement learning approach to fail-safe
design for multiple space robots?cooperation mechanism
without communication and negotiation schemes. Ad-
vanced Robotics, 17(1):21–39, 2003.

Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus,
K., Aru, J., Aru, J., and Vicente, R. Multiagent cooper-
ation and competition with deep reinforcement learning.
PloS one, 12(4), 2017.

Tan, M. Multi-agent reinforcement learning: Independent
vs. cooperative agents. In Proceedings of the tenth inter-
national conference on machine learning, pp. 330–337,
1993.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE, 2012.

Van de Wiele, T., Warde-Farley, D., Mnih, A., and
Mnih, V. Q-learning in enormous action spaces via
amortized approximate maximization. arXiv preprint
arXiv:2001.08116, 2020.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhn-
evets, A. S., Yeo, M., Makhzani, A., Kttler, H., Agapiou,
J., Schrittwieser, J., Quan, J., Gaffney, S., Petersen, S.,
Simonyan, K., Schaul, T., van Hasselt, H., Silver, D., Lilli-
crap, T., Calderone, K., Keet, P., Brunasso, A., Lawrence,
D., Ekermo, A., Repp, J., and Tsing, R. StarCraft II:
A New Challenge for Reinforcement Learning. arXiv
preprint arXiv:1708.04782, 2017.

Wang, R. E., Everett, M. D., and How, J. P. R-MADDPG for
partially observable environments and limited communi-
cation. In Proceedings of the Reinforcement Learning for
Real Life workshop (at ICML), 2019.

Wang, T., Liao, R., Ba, J., and Fidler, S. NerveNet: Learning
structured policy with graph neural networks. In 6th
International Conference on Learning Representations,
ICLR, 2018.

Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control

9. Experimental Details
In all experiments, we use a replay buffer of size 106, the target networks are updated via soft target updates with τ = 0.001,
and we scale the gradient norms during training to be at most 0.5. The mixing network used in COMIX, COMIX-NAF, and
FacMADDPG consists of a single hidden layer of 64 units, utilising an ELU non-linearity. The hypernetworks are then
sized to produce weights of appropriate size. The hypernetworks producing the first layer weights and final layer weights
and bias of the mixing network all consist of a single hidden layer of 64 units with a ReLU non-linearity. For COMIX
and its ablations, to speed up the learning, we share the parameters of the agent networks across all agents. Similarly, in
FacMADDPG, a single actor and critic network is shared among all agents, while in MADDPG, there is a separate actor and
critic network for each agent as in the original algorithm.

9.1. Continuous Predator-Prey

The architecture of all agent networks is a MLP with 2 hidden layers of 64 units and ReLU non-linearities, except for
COVDN-NAF and COMIX-NAF where we replace ReLU units with tanh units as it leads to better performance. In both
MADDPG and FacMADDPG, the architecture of all agent networks and critic networks is also a MLP with 2 hidden layers
of 64 units and ReLU non-linearities, while the final output layer of the actor was a tanh layer, to bound the actions. The
global state consists of the observations of all agents. COMIX and MADDPG can both take advantage of the extra state
information available during training, while COVDN ignores it. During training and testing, we restrict each episode to have
a length of 25 time steps. Training lasts for 2 million timesteps. To encourage exploration, we use uncorrelated, mean-zero
Gaussian noise during training (for all 2 million timesteps). We set γ = 0.85 for all experiments. We train on a batch size of
1024 after every timestep. All neural networks are trained using Adam (Kingma & Ba, 2014) optimiser with a learning
rate of 0.01. To evaluate the learning performance, the training is paused after every 2000 timesteps during which 10 test
episodes are run with agents performing action selection greedily in a decentralised fashion.

9.2. Multi-Agent Mujoco

The architecture of all agent networks is a MLP with 2 hidden layers with 400 and 300 units respectively, similar to the setting
used in OpenAI Spinning Up.4 All neural networks use ReLU non-linearities for all hidden layers, except for COVDN-NAF
and COMIX-NAF where we found tanh units lead to better performance. In both MADDPG and FacMADDPG, the
architecture of all agent networks and critic networks is also a MLP with 2 hidden layers with 400 and 300 units respectively,
while the final output layer of the actor was a tanh layer, to bound the actions. The global state consists of the full state
information returned by the original OpenAI Gym (Brockman et al., 2016). COMIX and MADDPG can both take advantage
of the extra state information available during training, while COVDN ignores it. During training and testing, we restrict
each episode to have a length of 1000 time steps. Training lasts for 4 million timesteps. To encourage exploration, we
use uncorrelated, mean-zero Gaussian noise during training (for all 4 million timesteps). We also use the same trick as in
OpenAI Spinning Up to improve exploration at the start of training. For a fixed number of steps at the beginning (we set
it to be 10000), the agent takes actions which are sampled from a uniform random distribution over valid actions. After
that, it returns to normal Gaussian exploration. We set γ = 0.99 for all experiments. We train on a batch size of 100 after
every timestep. All neural networks are trained using Adam optimiser with a learning rate of 0.001. To evaluate the learning
performance, the training is paused after every 4000 timesteps during which 10 test episodes are run with agents performing
action selection greedily in a decentralised fashion.

9.3. Exploration

The choice of exploration strategy plays a substantial role in the performance of deep deterministic policy gradient algorithms
(Ciosek & Whiteson, 2018). To keep exploration strategies comparable across MADDPG and Q-learning based COMIX,
we restrict ourselves to noising in action spaces rather than parameter space (Plappert et al., 2018). MADDPG’s official
codebase 5 uses additive Gaussian noise with a standard deviation that is itself given by an additional policy output that is
learnt end-to-end within the policy gradient loss. As Q-learning does not allow explicitly predict a policy output, we cannot
apply a comparable strategy for COMIX. However, we find empirically that constant i.i.d. noising in the action spaces
exhibits similar performance at lower variance than learnt noise on 2-Agent HalfCheetah (see Figure 6: Right). Even on
Continuous Predator-Prey, a significantly less complex environment on which MADDPG’s official codebase was tuned on,

4https://spinningup.openai.com/en/latest/.
5https://github.com/openai/maddpg.git

https://spinningup.openai.com/en/latest/
https://github.com/openai/maddpg.git

Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control

learnt exploration does not result in better limit performance than i.i.d. Gaussian noise (see Figure 6: Left).

Figure 6. Mean episode return on Left: Continuous Predator-Prey and Right: 2-Agent HalfCheetah comparing MADDPG with constant
i.i.d. Gaussian noise and MADDPG with learned Gaussian noise. The mean across 10 seeds is plotted and the 95% confidence interval is
shown shaded.

10. Critic Mixing Network Constraints in FacMADDPG
As in an actor-critic setting, the critic is not used for greedy action selection, FacMADDPG does not strictly require a
monotonocity constraint on its critic mixing network. However, we find empirically that introducing the monotonicity
requirement significantly increases performance (see Figure 7). This supports the hypothesis that introducing monotonicity
constraints strikes a reasonable trade-off between having independent critics with limited coordinative ability and the case
where excess coordinative expressivity in the unconstrained critic leads to an increase in learning difficulty.

Figure 7. Mean episode return on Left: Continuous Predator-Prey and Right: 2-Agent HalfCheetah comparing FacMADDPG and
FacMADDPG without monotonicity constraints on the mixing network of the critic. The mean across 10 seeds is plotted and the 95%
confidence interval is shown shaded.

Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control

Task Goal Special observations Reward function

2-Agent Swimmer Maximise +ve x-speed. - ∆x
∆t

+ 0.0001α

2-Agent Reacher
Fingertip (green) needs

to reach target at random
location (red).

Target is only
visible to green agent.

−‖distance from fingertip to target‖22
+α

2-Agent Ant Maximise +ve x-speed. All agents can
observe the central torso.

∆x
∆t

+ 5 · 10−4 ‖external contact forces‖22
+0.5α+ 1

2-Agent Ant Diag Maximise +ve x-speed. All agents can
observe the central torso.

∆x
∆t

+ 5 · 10−4 ‖external contact forces‖22
+0.5α+ 1

2-Agent HalfCheetah Maximise +ve x-speed. - ∆x
∆t

+ 0.1α

2-Agent Humanoid Maximise +ve x-speed. -
0.25∆x

∆t
+min(10,

5 · 10−6 ‖external contact forces‖22)
2-Agent

HumanoidStandup Maximise +ve x-speed. -
y

∆t
+min(10,

5 · 10−6 ‖external contact forces‖22)
3-Agent Hopper Maximise +ve x-speed. - ∆x

∆t
+ 0.001α+ 1.0

4-Agent Ant Maximise +ve x-speed. All agents can
observe the central torso.

∆x
∆t

+ 5 · 10−4 ‖external contact forces‖22
+0.5α+ 1

6-Agent HalfCheetah Maximise +ve x-speed. -
0.25∆x

∆t
+min(10,

5 · 10−6 ‖external contact forces‖22)

Table 1. Overview of tasks contained in Multi-Agent Mujoco. We define α as an action regularisation term −‖u‖22.

Algorithm 2 For each agent a, we perform nc CEM iterations. Hyper-parameters di ∈ N control how many actions are
sampled at the ith iteration.

function CEM (Q1, . . . , QN , τ1, . . . , τN)
for a := 1, a ≤ N do
µa ← 0 ∈ R|Aa|
σa ← 1 ∈ R|Aa|
for i := 1, i ≤ nc do

for j := 1, j ≤ di do
v′aj ∼ N (µa,σa)
vaj ← tanh(v′aj)
qaj ← Qa(τa,vaj)
j ← j + 1

end for
if i < nc then
U ← {v′al | qal ∈ topki(qa1, . . . , qadi),∀l ∈ {1 . . . N}}
µa ← sample mean(U)
σa ← sample std(U)

else {Right}
m← argmaxj qaj
ua ← vam

end if
i← i+ 1

end for
a← a+ 1

end for
return 〈u1, . . . ,un〉

end function

