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1 Introduction

Meta-learning is a popular and general way to tackle few-shot learning problems, i.e., learning
how to solve unseen tasks given only little data. Many meta-learning methods can be characterised
as meta-gradient-based [7, 13} [17, 30]. Briefly speaking, meta-gradient-based methods work as
follows. During training, at each iteration, these methods perform a gradient-based task-specific
update (often referred to as the "inner loop"). Then, for the meta-update, so-called meta-gradients
are computed by backpropagating through these inner loop updates (which therefore involves taking
higher order gradients). At test time, on a new task, only the inner-loop update is performed using
a few gradient updates. In few-shot learning, typically, the loss function applied at test time is the
one we are ultimately interested in minimising, such as the mean-squared-error loss for a regression
problem. However, given we have few samples at test time, we argue that the loss function we
want to minimise is not necessarily the loss function most suitable for computing gradients in a
few-shot setting. Such a loss function is naive in the sense that it treats each datapoint independently,
disregarding any relationships between them. This can be particularly problematic when only few
datapoints are given and include, e.g., outliers or correlated points. Furthermore, it can be prone to
cause over- or underfitting [14]], depending on the stepsize and number of gradient steps. Therefore,
we propose to instead learn the test-time loss function for meta-gradient-based methods for few-shot
adaptation. In this work, we introduce fast adaptation via backprogating learned loss (VIABLE), a
generic meta-learning extension which builds on existing meta-gradient-based methods by learning
a differentiable loss function using meta-gradients. This loss function replaces the pre-defined
inner-loop loss function and is meta-learned such that it maximises performance (i.e., minimises
the pre-defined loss) within a few gradient steps and with little data. We show that learning a loss
function capable of leveraging relational information between samples reduces underfitting, and
significantly improves performance and sample efficiency on a simple regression task. In addition,
we show VIABLE is scalable by evaluating on the Mini-Imagenet dataset [[16]]. Since we typically
use neural networks as function approximators, we will refer to the network making predictions as
the prediction network and the learned loss function as the loss network.

Learning a loss function has been explored in a variety of ways in machine learning fields [, 15} 6,
10, 1191 221 25127, 128]] including reinforcement learning and semi-supervised learning. In this paper,
we are concerned with the few-shot supervised learning setting. Closest related to our method is
recent work by Chebotar et al. [5]], who propose M L3, in which they learn a loss function in a similar
fashion as VIABLE. In contrast to our work, M L3 is not designed for few-shot learning and instead
uses the learned loss function to learn a prediction network from scratch per task. VIABLE on the
other hand can be applied on top of any meta-gradient-based meta-learning techniques designed for
few-shot learning. Also closely related is work by Sung et al. [22], who propose meta-critics. In
addition to also learning from scratch per task, during meta-training, the meta-critic (loss network) is
updated after each batch of task-specific actor (prediction network) updates; while in VIABLE, the
loss network is frozen during task-specific updates and thus requires far fewer updates in total. Most
importantly, compared to the above methods, we propose to learn a loss function that is designed to
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Figure 1: Overview of VIABLE with a simple loss network applied to CAVIA, where fy is the
prediction network, L, is the loss network, and L7; is the original task-specific loss function.
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operate on the entire dataset at once, thus leveraging relational information between datapoints. We
achieve this by using a relation network [[18] that looks at pairwise combinations of datapoints. As
we show in this paper, this leads to a significant improvement in terms of performance.

2 Background

We consider the problem setting of meta-learning for supervised learning problems. In supervised
learning, we learn a model f : z > gy that maps data points x that have a true label y to predictions 3.
In few-shot learning problems, during each meta-training iteration, a batch of N tasks T = {7;}¥;
is sampled from a task distribution p(7). A task 7; is a tuple (X, ), L, q), where X is the input space,
Y is the output space, L is the task-specific loss function, and ¢(z, y) is a distribution over data points.
]\/I::miu

During each meta-training iteration, for each 7; € T, we sample from q7;: DV = {(x,y)"™},,2,

and D't = {(z,y)"™} M7 where M!™a" and M!es" are the fixed number of training and test
datapoints respectively. The training data is used to perform updates on the model f. Afterwards, the

updates are evaluated on the test data and f or the update rule are adjusted.

2.1 Context Adaptation via Meta-Learning: CAVIA

In theory, VIABLE can be generically applied to meta-gradient-based methods. In this paper, we
evaluate on CAVIA [30] because it applies the inner-loop update only on a small set of so-called
context parameters instead of the entire network, making it easier to optimise. CAVIA aims to learn
two distinct sets of parameters: task-specific context parameters ¢ and task-agnostic parameters . At
every meta-training iteration (inner loop), CAVIA starts from a fixed value ¢y, typically ¢9 = 0, and
updates its context-parameters ¢ for each task 7; in the current batch T of tasks as follow

1
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In the meta-update step (outer loop), the model parameters 6 are updated with respect to the perfor-
mance after the inner-loop update:
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At test time, model parameters 6 are frozen and only the task-specific parameters ¢ are updated.

3 Fast Adaptation via Backpropagating Learned Loss: VIABLE

We introduce VIABLE, a generic meta-learning extension that aims to adapt a loss function applicable
to meta-gradient-based methods. During training, at each iteration, VIABLE trains an existing meta-
gradient-based method (referred to as prediction network) by performing gradient updates using the
output of a differentiable learned loss function (referred to as loss network). During the meta-update
step, the meta-gradients are calculated and used to update the loss network. In this section, we

TWe outline CAVIA for one gradient update step, but it can be extended to several gradient steps.



consider two variants of loss networks: a simple loss network and an extension inspired by relation
networks [18] which leverages relationships between datapoints.

Simple Loss Network. First, we consider a simple loss network L., which takes as input the target
y, the prediction ¢, and pre-defined task-specific loss £ (¢, y), and outputs a loss value. In the inner
loop of the meta-gradient-based method, we replace the pre-defined task-specific loss with the output
of our loss network. In this case, we replace CAVIA’s inner loop update (see (I))) with:

¢i=¢o—av¢ﬁ Yo Lo(Lr(fon(@),y), foon(@),y) 3)
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The task-specific parameters ¢ are updated by backpropagating the learned loss through the original
loss and the outputs of the prediction network. In the outer loop, we update the parameters of the loss
network 1) along with the task-agnostic parameters of the prediction network 6 (see (2)):
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Relation Loss Network. Note that the pre-specified loss function £7; and the aforementioned
simple loss network naively calculate an independent loss per sample and average, ignoring any
possible relationships between datapoints. For example, in the case of an outlier with a large
disagreeing gradient compared to the other samples, simply averaging the gradients may negatively
impact the model’s performance post-update. In addition, there is substantial evidence in few-shot
learning showing that incorporating relational information between samples improves predictions
[LL1L 17, 23, 26]. Thus, we believe that loss functions can improve upon gradient-based methods
by providing the prediction network with relational information between samples, especially in
gradient-based methods like MAML which treat their datapoints as independent during prediction.
To show this, we introduce a relation loss network which takes as input the pairwise combinations of
2, Y, J, L7:(§,y). Thus, we replace CAVIA’s inner loop update (see (I))) with:
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where §; = f4,.0(x;). Similar to the simple loss network, in the outer loop, we update the loss
network and the task-agnostic parameters of the prediction network (see @) and (2))).

4 Experiments

In this section, we evaluate the benefits of replacing the existing loss function in meta-gradient-based
meta-learning methods with an adapted loss trained with VIABLE. We show that: 1) a loss function
that leverages relational information between samples yields a substantial increase in performance
over loss functions without relational information, 2) VIABLE improves the sample efficiency and
reduces underfitting in a simple regression task, and 3) VIABLE is scalable by evaluating on the
Mini-Imagenet dataset. For these experiments, we denote simVIABLE as applying VIABLE with a
simple loss network to CAVIA, and relVIABLE as applying VIABLE with a relation loss network to
CAVIA. Note that we do not evaluate against M L3 since it is not designed for few-shot learning and
thus would require more samples. We describe the specifics of our implementation in the Appendix.

4.1 Regression

We begin with a regression problem of fitting sine curves from Finn et al. [7]. A task is defined by
the amplitude and phase of the sine curve which are uniformly sampled from [0.1,0.5] and [0, 7]
respectively. During training, for each task, k (default £ = 10) datapoints are uniformly sampled
from « € [—5, 5] and given to the model to perform inner loop updates. The task specific loss is
mean-squared-error (MSE) loss. In these experiments, we perform a single inner-loop update.

Improved performance. Both versions of VIABLE significantly outperform CAVIA. With 2 context
parameters, CAVIA achieves aloss of 0.21, simVIABLE achieves 0.14, and rel VIABLE achieves 0.02,
which suggests that leveraging relational information between samples can substantially improve the
effectiveness of the loss function. See Appendix for the full results.



Improved data efficiency. For this experiment, we uniformly sample k& € {0, ..., 20} (the number
of training sample points) during training. We observe in Table [T|that rel VIABLE achieves better
performance with 4 sample points than CAVIA does with 20. In Figure[2] we see that with only a
single gradient update, CAVIA underfits on the 4 test points while rel VIABLE fits the curve closely.

Number of Sample Points

--- relVIABLE

Method 0 1 2 3 4 20
CAVIA 313 169 093 0.58 047 0.13
simVIABLE 3.13 1.57 085 045 037 0.09
2] - cavia relVIABLE 3.14 1.44 0.52 0.17 0.11 0.02

Table 1: Results for the sine curve regression task. Shown is the

Figure 2: Test with 4 data MSE for varying number of sample points.
points

4.2 Classification

We show that this method can scale to problems which require larger networks by testing it on the
few-shot image classification benchmark Mini-Imagenet [16].

Setup. In Rusu et al. [17]], a Wide Residual Network (WRN) [29] is trained with supervised
classification on the meta-train set; the network is then frozen and feature representations of the Mini-
Imagenet dataset is extracted. Following their training protocol, we use the same embeddings and
meta-learn on both the meta-train and meta-validation sets, with early-stopping on meta-validation.

5-way accuracy

Method 1-shot 5-shot

Matching Networks [26]] 46.6% 60.0%

MAML [7] 48.70 + 1.84% 63.11 +0.92%
Meta-SGD* [[13]] 54.24 4+ 0.03% 70.86 4= 0.04%
LEO* [17] 61.76 £0.08%  77.59 +0.12%
MetaOptNet-SVM-trainval T[12] 64.09+0.62% 80.00 + 0.45%
CAVIA* 58.10 £ 0.51% 67.07 £ 0.45%
simVIABLE* 57.88 +0.49% 69.32 - 0.41%
relVIABLE* 58.26 +£0.50%  70.23 +£0.41%

Table 2: Few-shot classification results on Mini-Imagenet (average accuracy with 95% confidence
intervals). T Is the current state-of-the-art. * Used the feature embeddings from Rusu et al. [[17]

Results. Table [2|shows that simVIABLE offers a notable 2.25% improvement over CAVIA while
relVIABLE offers a substantial 3.16% increase in accuracy in 5-way 5-shot experiments. In both
variants of VIABLE, 5-way 1-shot experiments are within confidence intervals. We suspect that
learning a loss for 1-shot experiments does not offer a significant advantage due to a single sample
being all the information the model is provided regarding a class of images. For example, there is
no concept of an outlier with a single sample. In the regression experiments, Table|l{shows similar
results where the learned loss provides minor improvements over CAVIA for a single sample point.

5 Conclusion and Future Work

We proposed VIABLE, a general-purpose meta-learning extension applicable to existing meta-
gradient-based meta-learning methods. We show that learning a loss capable of leveraging relations
between samples through VIABLE improves upon CAVIA by mitigating underfitting and yielding
substantial improvements to sample efficiency and performance. Furthermore, we show VIABLE is
scalable by evaluating on the Mini-Imagenet dataset. For future work, we are interested in applying
this extension to other existing meta-learning methods such as MAML and LEO, and evaluating
variants of loss networks which utilise more than just pairwise relations such as an attention network.
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VIABLE: Fast Adaptation via Backpropagating Learned Loss
Supplementary Material

A Pseudocode

Algorithm 1 simVIABLE: VIABLE applied to CAVIA with a simple loss network

Require: Distribution over tasks p(7)

Require: Step sizes «, 3,

Require: Initial model £, with ¢ intitialised randomly and model fy, ¢ with @ initialised randomly
and o9 =0

1: while not done do
2:  Sample batch of tasks T = {7;}¥., where 7; ~ p
3 forall 7; € T do
4‘ D;ram) 'D;esl ~ q7_1
5 ¢o =0
6 bi = o _Oqubﬁ Z _ Eq/,(ﬁﬂ(fm,a(i),y),f¢0,0(1?),y)
z (z,y)EDg"""
7:  end for
8 YU —Vyx > mm > Lr(feelz,y))
TiET ' (z,y)eD
9 0+ 0-PFVey > e > Lr(fse(xy)
TiET ' (ay)eD

10: end while

Algorithm 2 relVIABLE: VIABLE applied to CAVIA with a relation loss network

Require: Distribution over tasks p(7T)
Require: Step sizes «, (3, 7y
Require: Initial model £, with 1 intitialised randomly and model f4, ¢ With § initialised randomly
and o9 =0
1: while not done do
2:  Sample batch of tasks T = {T;}}¥., where T; ~ p
3 for all 7; € T do
4: Dgrain7rD;est ~ qT;
5
6

¢o=0
L aV(bW 2 (o e Lo (L (055950 255 955 Yis £7 Ges Ye)s T T Yk)
/ (r,yK) eDtimin
7: end fOr
8 Y- vaﬁ > W > Lr(feie(x,y))

T:€T " (z,y)eDE"

% 90— Bk X e Y Ly(fanlay)
T:€T " (z,y)eDEY

10: end while

B Additional Related Work

Meta-gradient based Methods. A common form of meta-learning is to adapt parameters in two
interleaving phases that can be characterised as the task-specific updates (often referred to as the
"inner loop") and the meta-updates (often referred to as the "outer loop"). At test time, on a new task,
only the task-specific updates are applied. Finn et al. [7] introduces a meta-gradient-based method
(MAML) that aims to learn a model initialisation that allows for fast adaptation to a new task given a
few task-specific updates. Many methods that are inspired by or built on top of MAML can also be
classified as meta-gradient-based [2} 4} 8] 9, [13] 30]. Another meta-gradient-based method, CAVIA
[30] extends MAML by splitting the model parameters are into task-specific (context) parameters



and task-agnostic parameters, resulting in fewer parameters to optimize in test time. Rusu et al.
[17] introduces a meta-gradient-based method LEO that learns to produce network weights from
task-specific embeddings. In this paper, we focus on CAVIA due to its structure being simple and
easy to optimise.

Learning a Loss Function. Specially designed loss functions have been important in improving
performance of many tasks such as classification [[15]], machine translation [3} 20], ranking [24]], and
object detection [21]]. In recent years, there has been interest in exploring methods for learning a good
loss function automatically in a variety of machine learning fields [[1} 5 16} [10} [19} 22} 251 27| 28],
including reinforcement learning and semi-supervised learning. In this work, we focus on meta-
learning, specifically the few-shot supervised learning setting. Closely related is meta-critics [22]
and M L3 [5]], who both learn a form of loss network. In contrast to their works, we are not required
to learn our prediction network from scratch per task. Furthermore, VIABLE is applicable to any
meta-gradient-based meta-learning techniques designed for few-shot learning, and, in contrast to
meta-critics, we do not require adaptation for our loss network at test time. Most importantly,
compared to the above methods, we propose to learn a loss function that is designed to operate on the
entire dataset at once, thus leveraging relational information between datapoints. We achieve this by
using a relation network [18]] that looks at pairwise combinations of datapoints. As we show in this
paper, this leads to a significant improvement in terms of performance.

C Regression

C.1 Details

In the sine curve regression task, we follow the architecture used in the original paper for CAVIA [30]
(a neural network with two hidden layers and 40 nodes each). Unless otherwise stated, by default
we use 5 context parameters. In addition, a batch of 25 tasks is used per meta-update. We train for
50,000 iterations, with early stopping on a meta-validation set of 100 newly sampled tasks. During
testing, we presented the model with p (default p = 10) datapoints from 1000 newly sampled tasks
and measured MSE over 100 linearly spaced test points. In the meta-update step, the task-agnostic
parameters of the prediction network is updated using the Adam optimiser with the standard learning
rate of 0.001 which is annealed every 5,000 steps by multiplying it by 0.9.

To allow a fair comparison, in VIABLE we use the same architecture as CAVIA for the prediction
network. For both the relation loss network and the simple loss network, we use a neural network with
three hidden layers of 32 nodes each. In the meta-update step, the parameters of the loss network is
learned along with the task-agnostic parameters of the prediction network using the Adam optimiser
with the standard learning rate of 0.001 which is annealed every 5,000 steps by multiplying it by a
factor of 0.9.

Both VIABLE and CAVIA are trained with a single inner-loop gradient step with an inner loop
learning rate of 1.0.

C.2 Additional Results

Number of Context Parameters

Method 1 2 3 4 5
MAML 0.29(0.02) 0.24(0.02) 0.24(0.02) 0.23(0.02) 0.23(0.02)
CAVIA 0.84 (0.06) 0.21(0.02) 0.20(0.02) 0.19 (0.02) 0.19 (0.02)

simVIABLE  0.75(0.05) 0.14 (0.01) 0.15(0.01) 0.14(0.01) 0.16 (0.01)
relVIABLE ~ 0.57 (0.05)  0.02 (0.00) 0.04 (0.00) 0.03 (0.00) 0.01 (0.00)

Table 3: Results for the sine curve regression task. Shown is the mean-squared-error (MSE) for
varying number of context parameters, with 95% confidence intervals in brackets.
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Figure 3: Pre-update and post-update test-time loss of each method on the sine curve task. The task
specific loss of CAVIA is mean-squared-error (MSE) loss. The task specific loss of VIABLE is the
output of the learned loss network.

D Classification

D.1 Problem Setting

In N-way K-shot classification, a task is a random selection of N classes. The model gets to see K
examples per class from which the model is expected to learn to classify unseen images from the
N classes. The Mini-Imagenet dataset is divided into training, validation, and test metasets with 64
classes, 16 classes, and 20 classes respectively in which there are 600 images per class. We use an
open-source dataset of Mini-Imagenet embeddings made available by [17]. The embeddings are each
of size 640.

D.2 Model Details

In CAVIA, our model uses a single hidden layer of size 800 and 100 context parameters. To ensure
fairness, we use the same architecture for the prediction network in VIABLE. In simVIABLE, our
loss network consisted of two hidden layers of 64 nodes each, and in rel VIABLE, it consisted of
two hidden layers of 1500 nodes each. Both VIABLE and CAVIA are trained with two inner-loop
gradient steps along with an inner-learning rate of 1.0. In the meta-update step, VIABLE (prediction
network and loss network) and CAVIA are both trained using the Adam optimiser with the standard
learning rate of 0.001 which is also annealed every 5,000 steps by multiplying it by a factor of 0.9.

D.3 Further Experiments

We perform an additional experiment that evaluates CAVIA and VIABLE’s ability to generalise to
different amount of shots than seen during training. In this experiment, we train on 5-way 5-shot tasks
and evaluate on 5-way k-shot where k varies from 1 to 9. Table |4{ shows both variants of VIABLE
significantly outperform CAVIA in generalising at test time to tasks which have a different amount of
data than during meta-training. In the case of k£ = 1, the relation loss network calculates a loss using
the same input in a pair with itself.



Number of Shots: 5-way k-shot
Method 1 2 3 4

CAVIA 50.36 £ 0.49% 58.94 +£0.46%  62.64 £0.46% 65.61 + 0.44%
sinVIABLE  53.94+0.49%  62.19+0.44%  65.52 £ 0.43% 68.16 + 0.41%
relVIABLE 55.03 £0.48% 63.02+0.44% 66.59 +0.42% 68.79 +0.42%

Number of Shots: 5-way k-shot
5 6 7 8 9

67.07 £0.45%  68.32+£0.43%  69.13+0.43%  70.16 £0.43%  69.95 + 0.44%
69.32+£0.41%  70.10£0.40%  71.03+£0.40%  72.01 £0.39%  71.79 £0.39%
70.23 +0.41% 71.06+£0.39% 71.90+0.40% 72.57+0.39% 72.80+0.39%

Table 4: Results for Mini-Imagenet. Shown is the accuracy for 5-way k-shot while being pre-trained
on 5-way 5-shot, with 95% confidence intervals in brackets.
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