1907.08478v1 [cs.Al] 19 Jdul 2019

arxXiv

Interactive Learning of Environment Dynamics for Sequential Tasks

Robert Loftin*
North Carolina State University
Raleigh, NC 27695
rtloftin@ncsu.edu

Michael L. Littman
Brown University
Providence, RI 02912, USA
mlittman@cs.brown.edu

Abstract

In order for robots and other artificial agents to efficiently
learn to perform useful tasks defined by an end user, they
must understand not only the goals of those tasks, but also
the structure and dynamics of that user’s environment. While
existing work has looked at how the goals of a task can be
inferred from a human teacher, the agent is often left to learn
about the environment on its own. To address this limitation,
we develop an algorithm, Behavior Aware Modeling (BAM),
which incorporates a teacher’s knowledge into a model of the
transition dynamics of an agent’s environment. We evaluate
BAM both in simulation and with real human teachers, learn-
ing from a combination of task demonstrations and evaluative
feedback, and show that it can outperform approaches which
do not explicitly consider this source of dynamics knowledge.

1 Introduction

A key goal of interactive learning research is to allow robots
and other artificial agents to leverage human knowledge to
more efficiently learn useful tasks. Such agents often require
large amounts of data to learn tasks on their own, data which,
while easy to generate in simulation, can be expensive to col-
lect in real-world settings. Through interactive learning, an
agent can rely on human knowledge in addition to its own,
limited experience. The challenge is learning from modes of
communication that are natural for users (whom we will re-
fer to as the teachers) who lack expertise in programming
or Al. Here we consider two such modes: task demonstra-
tions (Argall et al. 2009) and evaluative feedback (Knox,
Stone, and Breazeal 2013). As these types of data are ex-
pensive to collect, we need to extract as much information
as possible from interaction with a teacher. In this work, we
develop an algorithm, Behavior Aware Modeling (BAM),
which incorporates data provided by a teacher for several
different tasks into a single model of the agent’s environ-
ment, which allows the teacher’s knowledge to be shared
across all of the tasks the agent is learning.

A teacher’s understanding of their environment is implicit
in the way they choose to perform different tasks, and BAM
allows an agent to build this knowledge into its own model
of the world. There are many settings where an agent must
learn to operate in an environment that its human teachers

*Work done in part while authors were with Borealis Al

Bei Peng*
Washington State University
Pullman, WA 99164, USA
bei.penglwsu.edu

Matthew E. Taylor
Borealis Al
Edmonton, AB T5J 3G2, Canada
matthew.taylor@borealisai.com

David L. Roberts
North Carolina State University
Raleigh, NC 27695, USA

robertsdf@csc.ncsu.edu

would already know well. For example, a robot that trans-
ports materials around a hospital needs to learn the layout of
the building, and how the people within it will behave (e.g.
will someone pushing a gurney make way for the robot?). A
smart home system will be more effective if it knows how
the HVAC system affects different parts of the house, and
where the occupants are likely to be at a given time. While an
agent could acquire such information on its own, this might
be expensive or even dangerous (e.g. the robot blocking a
gurney to see what happens). This work shows how such
knowledge can be acquired from human teachers, in combi-
nation with an agent’s own experience.

BAM treats the problem of learning multiple tasks as a set
of Markov decision processes, each with the same transition
dynamics, and captures the teacher’s understanding of the
environment with a model (Brafman and Tennenholtz 2002;
Deisenroth and Rasmussen 2011) of these dynamics, while
learning separate cost functions encoding the goals of each
of the tasks. BAM can be seen as a generalization of In-
verse Reinforcement Learning (IRL), which learns to per-
form tasks by identifying the cost functions defining those
tasks (Abbeel and Ng 2004; Vroman 2014). The key differ-
ence between BAM and IRL is that IRL relies solely on the
agent’s own understanding of the transition dynamics, while
BAM also exploits the teacher’s knowledge of these dynam-
ics. BAM combines its own experience and prior knowledge
of the dynamics with that provided by the teacher, and be-
cause its dynamics model is shared across tasks, the policy it
learns for one task can incorporate data provided for another.

In addition to deriving a novel algorithm for learning tasks
and dynamics from demonstrations and evaluative feedback,
we also present empirical results comparing BAM against
existing approaches to learning from such data. We evaluate
BAM both with simulated teachers and with human teach-
ers through a large-scale, web-based user study. Our results
demonstrate that by explicitly capturing a teacher’s under-
standing of the environment, BAM can significantly reduce
the total effort required to teach an agent to perform a collec-
tion of tasks. Interactive learning is limited by the amount of
information a human teacher can provide, and so by reduc-
ing the effort required on the part of the teacher BAM may
allow for interactive learning to be applied to more complex
and useful tasks than would otherwise be feasible.

2 Related Work

This work considers the case where a human teacher demon-
strates a set of tasks, and then provides evaluative feed-
back while the agent attempts to perform these tasks it-
self. As there is no observable cost function, standard re-
inforcement learning methods cannot be directly applied.
For learning from demonstrations, the simplest approach
would be behavioral cloning (Bain and Sammut 1995;
Pomerleau 1989), where a supervised learning algorithm is
used to find a mapping from states to actions based of the
teacher’s actions. Behavioral cloning, however, often strug-
gles to find robust policies for sequential tasks (Ross, Gor-
don, and Bagnell 2011; Atkeson and Schaal 1997). By us-
ing knowledge of the dynamics of the environment, and
finding cost functions describing the tasks being taught, in-
verse reinforcement learning can produce policies which are
robust over longer time horizons, and which generalize to
states not encountered during training (Abbeel and Ng 2004;
Ng and Russell 2000).

The dynamics knowledge on which IRL depends is some-
times provided in the form of explicit state transition proba-
bilities (Ramachandran 2007; Syed, Bowling, and Schapire
2008), but in more realistic settings the agent must acquire
this information through its own interaction with the envi-
ronment (Abbeel and Ng 2004; Bloem and Bambos 2014;
Boularias, Kober, and Peters 2011). In contrast to existing
IRL approaches, the algorithm described here learns about
the dynamics based on the teacher’s demonstrations and
feedback. BAM interprets teacher actions in much the same
way as many existing IRL algorithms (Ramachandran 2007;
Neu and Szepesvari 2007; Vroman 2014), assuming that
each action is sampled from a Boltzmann distribution based
on the expected return values, or ()-values, for possible ac-
tions in the current state. BAM is most closely related to
Maximum-Likelihood IRL (ML-IRL) (Vroman 2014), in
which these ()-values are assumed to be computed through
a differentiable, soft value iteration process, and costs are
found via gradient ascent on the log-likelihood of the data.

We note that other recent work has taken a similar ap-
proach to ours, learning both cost functions and dynamics
parameters from human demonstrations via a maximum-
likelihood IRL algorithm (Herman et al. 2016). In contrast
to that work however, this work demonstrates that incorpo-
rating teacher knowledge into an agent’s dynamics model
is beneficial in the context of real-time, interactive learn-
ing. We also consider the problem of learning multiple tasks
(with multiple cost functions) simultaneously. Finally, our
algorithm can incorporate positive and negative feedback
from the teacher, relying on a variation of the Bayesian in-
terpretation of feedback developed in (Loftin et al. 2016).

3 Algorithms

The behavior-aware modeling algorithm assumes that infor-
mation coming from the teacher, both demonstrations of the
target tasks and evaluative feedback given in response to the
agent’s behavior, depends on some state-action value func-
tion @ known only to the teacher. This Q-function itself de-
pends on the cost function C' which the teacher associates

with the current task, as well as the teacher’s internal model
T of the dynamics of the environment (which we assume is
equivalent to the true dynamics). We then assume that the Q-
function for a task is computed via a finite number of steps
of the same soft value iteration used in ML-IRL, defined by

Qi(s,a) = =C(s) + Y T(s,a,8")Viea(s)) (D)
s'esS
Vis) = 3 Qu(s,) Ztl(s) (R (5.0). 2

a€A

where Z(s) = 3, 4 €79¢(#) is a normalization term. This
soft value iteration has the advantage of being differentiable,
and accounts for the teacher’s potentially suboptimal behav-
ior. It also allows the teacher’s actions and feedback to de-
pend on states that it would not under optimal planning.
The BAM algorithm estimates 7" and the cost C; for each
task ¢ by maximizing their probability given the data pro-
vided by the teacher (feedback and demonstrated actions),
as well as the agent’s direct observations of state transi-
tions. We divide the training data provided to BAM into a
set D containing the teacher’s actions and feedback, and a
set Dp containing the state transitions observed when ei-
ther the teacher or the agent takes an action. We further
divide Dy into sets D% for each task i being taught. D
consists of state transitions o = {s, a, s’}, while each set
DE. consists of state-action pairs ¢ = {s,a} and feedback
events) = {s,a, f}. Similar to Bayesian IRL (Ramachan-
dran 2007), BAM assumes that a teacher samples actions
from a Boltzmann distribution such that p(als) oc e#@(5:2),
To incorporate positive and negative feedback, we em-
ploy a version of the SABL feedback model developed
in (Loftin et al. 2016). This version, which we refer to
as Advantage-SABL (A-SABL), defines the probability of
receiving a positive or negative feedback signal from the
teacher in terms of the advantage of the most recent ac-
tion. Specifically, we define the advantage of action a; as
8t = Q(st,a1) — a7 area @(s1,@') (the advantage un-
der a random policy). The probabilities of receiving positive
feedback f¥ or negative feedback f~ for a; are then

p(fe=f"lse;a0) = (1=p") [(1 = 2e)a(ad) +¢] (3)
p(fe=["lst;a0) = (L=p7) [(1 = 2€e)0(—ads) + €], (4)

where o(x) = 1/(1 + e~*). The probability of receiving
no feedback is simply 1 — p(f; = fV|ss,a) — p(fi =
f|st,at). pt and p~ are tunable parameters that define
the probability of receiving explicit feedback given that the
teacher interprets an action as correct or incorrect, while € is
the teacher’s error rate, and « is a scale factor.

3.1 Behavior Aware Modeling

BAM works with a parametric space of dynamics models
and cost functions, and computes maximum likelihood esti-
mates of the parameters 6 of the dynamics model Ty, as well
as the parameters ¢; of the cost functions Cy, for each of
the tasks being taught. Both the dynamics parameters 6 and
the parameters of ¢; of each cost function (which we write

compactly as ¢?) are learned via gradient ascent on their log-
probability, that is, BAM maximizes the objective function:

|Dr|
L(0,6: Dr, D) = [np(D7|Qp.0,) +Inn(e:)]
i=1
+ Z InTy(s,a,s) +Inm(0), (5)
o€DEg
where (g 4, is the Q-function computed under the model
Ty, for the task defined by Cy,, and where n(¢) and m(9)

are regularization terms. The most computationally difficult
part of the optimization is the gradient of Inp(D%.|Qg.4,)

w.r.t. § and qAS The gradient w.r.t. 0,

Vo Inp(D7|Qo,e,) =

D |BVeQop(s;a) = > w(s,0)BVeQop, (s, a)

se€Dr a’€A

0
+ Z VQH,(M(S) [hlp(f'S’a’ Q0:¢i(s>)] %Q@,dn(s)v (6)

YEDT

where 7(s,a) = %e@’m(s’“), depends on VpQg 4, (s, a)
and on %ng (s), the Jacobian of the ()-values for state s
w.r.t. 0. The gradient for ¢; takes the same form. We assume
that Q9,4, = 7, where Q7 is the Tth step of a soft value

iteration process. For state s and action a we then have
VoQ'(s,a) = —Cy,(s)

+ > Ty(s,a,8") [VolnTy(s,a,5') + VeV (s)]
s'eS
)
V¢iQt(s, a) =- V¢ic¢i (S)

+ Z To(s,a,8)V, VTS, ®)
s'eS

and for both 6 and ¢; we have
VVis) =
D wt(s,a) [(1 - BQ (s,a) + BV () VQ'(s,a)] , (9)

a€A

where 7(s,a) x e PR (9) that is, ' is the Boltzmann
action distribution for state s. In our implementation, we first
accumulate the likelihood terms for all demonstrated actions
and feedback before computing this gradient. Rather than
maximizing Equation 5 for the 6 and gf; simultaneously, we
have found empirically that alternating between optimizing
qg and optimizing 6 is more efficient and reliable in finding
good estimates of the dynamics and cost-functions.

4 Simulated Teacher Experiments

To understand how learning dynamics can reduce the effort
needed to teach a set of behaviors, we compare BAM against
two other approaches to interactive learning, using data gen-
erated by a simulated teacher. We consider three classes of

learning problems, which we refer to as domains, with dis-
crete state and action spaces. For each domain, we define
multiple environments, where each environment is defined
by its specific transition probabilities, which are initially un-
known to the learning agents. Within each environment, we
define one or more tasks, each defined by different cost func-
tion, which are also unknown. In our experiments, an indi-
vidual agent attempts to learn all the tasks within a single
environment. Each environment also defines a space of pos-
sible dynamics models and cost functions which the agents
must choose from. In all three domains, the true cost func-
tions were zero everywhere except for the goal states.

The first domain, which we refer to as navigation (see Fig-
ures la, 1b), is a grid world in which any grid cell may be
blocked by an obstacle. Each task in this domain is defined
by a goal location, while the dynamics are defined by the
set of cells that are blocked by obstacles. The space of cost
functions has one parameter for each cell in the grid, poten-
tially allowing obstacles to be represented as high-cost cell.
The dynamics model also has one parameter per cell, and a
transition into cell 7 fails with probability 1/(1 + e~%).

The two other domains are grid worlds, in which each
grid cell has an additional feature which affects the transi-
tion dynamics, such that multiple states correspond to single
cell. In the farming domain (see Figures lc, 1d), the agent
may carry one of three farm implements (a plow, a sprin-
kler, or a harvester), and the implement it carries determines
which cells it is able to enter. Cells representing dirt fields
require the plow, while cells with immature crops require the
sprinkler, and cells with fully grown crops require the har-
vester. There are also cells in which the agent can pick up
each implement. Tasks are defined by groups of cells that the
agent must reach. The space of dynamics models is a space
of mappings from each implement to the probability that it
works on a certain type of cell, that is, a mapping from the
three implements to distributions over the three cell types.

In the gravity domain there are four possible gravity di-
rections, and the agent cannot move in the direction opposite
to the current gravity. A task is defined by a goal cell, and
certain cells allow the agent to change the gravity direction
so that it can reach the goal. Each of these cells has a color
which determines how it changes the direction of the grav-
ity, and the space of dynamics models is a space of mappings
from colors to distributions over the gravity directions. The
cost function spaces for the farming and gravity domains al-
low independent cost for every grid cell (but not every state).

4.1 Alternative Algorithms

We wish to determine whether incorporating teacher knowl-
edge into the agent’s dynamics model allows for more ef-
ficient learning than using a model built solely from di-
rectly observed state transitions. As the BAM algorithm
can be viewed as a generalization of maximum-likelihood
IRL to the problem of learning transition dynamics, we
compare BAM against a version of ML-IRL that uses a
dynamics model which does not incorporate information
from the teacher. This model-based IRL algorithm first finds
a maximum-likelihood model of the transition dynamics
based only on the observed transitions in D g, and then uses

D -
o

(a) Navigation - Two Rooms (b) Navigation - Doorway

(c) Farming - Two Fields (d) Farming - Three Fields

Figure 1: Four of the learning environments used in both the simulated teacher and human subjects experiments. The goal locations are

highlighted with either orange circles or green squares.

ML-IRL to find the cost function for each task. Model-based
IRL selects its dynamics model from the same spaces of
models as BAM does, and selects its actions greedily.

Both BAM and ML-IRL generalize to states for which
they have received no teacher data by learning cost functions
that describe the tasks being taught. As this approach may
be ineffective, or even counterproductive in some cases, we
also compare BAM against a behavioral cloning algorithm,
one that uses a tabular representation that does not gener-
alize between different states. To incorporate both feedback
and demonstrations, our behavioral cloning algorithm finds
a table of ()-values for each state-action pair, rather than a
policy, and selects its actions greedily (as with BAM and
model-based IRL). These (Q-values, however, can be inter-
preted simply as the log-probabilities of each action, with
the greedy policy selecting the most probable action.

4.2 Learning from Demonstration

In our first set of experiments, the simulated teacher only
provided demonstrations, and the agent did no exploration
on its own. In each round, a single demonstration of the op-
timal policy was given for each task in the current environ-
ment, after which the agent updated its policies for each of
these tasks to incorporate the new demonstrations. To best
reflect the behavior of real teachers, each demonstration was
terminated after the goal state was reached, with a final ac-
tion allowing the agent to observe the teacher remaining at
the goal. We evaluated the set of policies an agent learned at
a given point in time by their fotal return, that is, the sum of
the expected returns of policies for each task. The expected
return of was estimated by running 50 simulated episodes
following a policy (the agent did not see these episodes).

Figure 2 shows the total return of the policies learned by
each of the algorithms, as a percentage of the total return
of the optimal policies, and plotted against the number of
rounds of demonstrations. We can see that BAM substan-
tially outperforms both algorithms in the farming environ-
ments, while outperforming behavioral cloning in the grav-
ity environments, and model-based IRL in the Doorway en-
vironment. Furthermore, we can see that BAM dominates
the other algorithms in that it always performs at least as
well as the strongest alternative, while model-based IRL and
behavioral cloning perform inconsistently.

The apparent advantage of the BAM algorithm over
model-based IRL in the Doorway environment (see Fig-
ure 1b) is of particular interest. The initial state in this en-
vironment is randomly chosen from the bottom three rows
of the grid, such that the agent must go through the door-
way to reach any of the goals. While the walls are never en-
countered during the optimal demonstrations, BAM is able
to identify the location of the doorway and share this in-
formation across all four tasks. This example suggests that
inferring a teacher’s dynamics model may be an effective al-
ternative to extracting intermediate policies, commonly rep-
resented as options (Sutton, Precup, and Singh 1999) in RL,
from human demonstrations. Rather than learning policy
for going through the doorway, BAM can find a dynamics
model which leads the agent to use the doorway, thus cap-
turing the same behavior. Model-based IRL, however, must
encode the doorway within its task-specific cost functions,
and so must learn this behavior separately for each task.

The BAM algorithm also has an advantage in the farming
environments. In both of these environments, the agent must
move away from the target field to retrieve the plow. While
the agent never directly observes the fact that the other im-
plements do not work for the target field, it can infer this out-
come from the fact that the teacher went out of their way to
reach the correct machine. Finally, we attribute the relatively
strong performance of behavioral cloning in the navigation
domains to the fact that the cloning agent follows a random
policy until it reaches a state it has observed before (which
does not take very long), after which it knows the optimal
policy all the way to the goal. Even so, BAM still performs
at least as well as behavioral cloning in these environments.

4.3 Global Cost Functions

One of the main advantages of the BAM algorithm in
terms of reducing teacher effort is that it is able to share a
teacher’s knowledge across multiple tasks through the dy-
namics model. An alternative (and potentially simpler) ap-
proach to sharing such information would be to learn a
global cost function in addition to the task specific cost func-
tions, such that the policies learned for each task would be
optimal for the sum of the global and task costs. The global
cost function might encode much of the same teacher knowl-
edge that BAM captures with its dynamics model. For exam-

Figure 2: The total return of the policies learned by BAM, model-based IRL, and behavioral cloning, as a percentage of the total return for

Navigation - Wall

Navigation - Doorway

Navigation - Two Rooms

Navigation - Three Rooms

rounds

rounds

BAM

Model-Based IRL = =

rounds

Behavioral Cloning

the optimal policies. Curves are averages over 50 separate agents learning from scratch.

Navigation - Wall

Navigation - Doorway

Navigation - Two Rooms

£ £ £ £
% 100 F T T T T T T T T] ‘;?_’ 100 F T T T T T T T] % 100 F T T T T |- T |— T] g 100 F T T T T T T T]
E 80 = B :g 80 - Tl - - ~ g 80 == B g 80 o]
s 60 . s 60 - - . s 60 . s 60 = - - E
£ £ e £ £ =
g 40 B g 40F B g 40 B g 40F 1
o) o o
5 00, vy 1 s 20y vy v 10 O,y oy s O T
ES ES B B
12 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
rounds rounds rounds rounds
Gravity - Choices Gravity - Flip Farming - Two Fields Farming - Three Fields
c c c c
% 100 F T T T |7|_|7|7 li_ % 100 F T T T T l_ T _l_ .l] g 100 F T T T T T T T] % 100 F T T T T T T T]
T sof 1 & sof 7 T gf - -------94 T sof - .
L L L L - E - T = - ~ - -
E 60 - 1 g 60 - 1 g 60 - 1 g 60F < — 1
g 40 B E 40 B Z 40 B Z 40F 1
o o 3 3
s 00, 4 vy vy 18 00y oy vy v 10 Oy oy s O
® ES ES £
1.2 3 4 5 6 7 8 9 10 1.2 3 45 6 7 8 9 10 12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10

rounds

Navigation - Three Rooms

£ £ £ £
% 100 F T T T T T T T L % 100 F T T T T T T T] % 100 F T T T T |_-|--|_'|--—_ g 100 F T T T T T T T]
T e = L Jd = | "]l = L =
g YpT--~ g el I Peca g ® i
T 60 B K 60 [/, =2 "= b K 60 pr b K 60 - - 1
£ £ - £ £ L
£ 40 B E 40F B g 40 1 £ 40 E
o o o o
5 0, , o4y 1 s 20 vy 108 O,y s 0 T
ES ES B B

12 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10

rounds rounds rounds rounds
Gravity - Choices Gravity - Flip Farming - Two Fields Farming - Three Fields

c c c c
S T 2 o T T T 2 wE o mmnT g o T T T T
= Y T L e e - — == E e 4
g s L g 8Or - R g 80 - - R A PO O .
5 60p° R T 60 F - - B ® 60 B s 60fF 7 7 1
£ £ r £ £ i
g 40 B £ 40 B g 40 B g 40F 1
o o o 3
5 OF 4 0wy 5 00, v vy 1 s 20y oy vy v 10 Oy
B B ES £

1.2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10

rounds rounds rounds rounds
BAM Model-Based IRL = = Global Cost == = =

Figure 3: The total return of the policies learned by BAM, model-based IRL, and model-based IRL with global costs, as a percentage of the
total return for the optimal policies. Curves are averages over 50 separate agents learning from scratch.

ple, in the navigation domain, unobserved obstacles could be
represented as states with a high global cost, with goals cap-
tured as low-cost states in the task-specific cost functions.
To understand the benefits of learning a global dynam-
ics model, we compared a version of model-based IRL that
learned a global cost function against both BAM and model-
based IRL without global costs. Figure 3 shows the results
of these comparisons, using the same training protocol and
environments as the experiments in Section 4.2. We can see
that in most cases, the use of a global cost function offers
little advantage over the model-based IRL algorithm, that is,
the total return for the global cost algorithm is less than or
equal to that of model-based IRL. In fact, we find that us-
ing a global cost function actually hurts performance in the
gravity domain. This reflects the fact that a global cost func-
tion cannot capture the outcomes of unseen actions, only the
immediate costs. The fact that BAM dominates the global

cost algorithm in the gravity and farming domains can be
explained by noting that the space of global cost functions is
much less constrained (and has many more parameters) than
the space of dynamics models, such that the agent requires
less data to learn a good dynamics model than it does a good
global cost function. The simpler space of dynamics models
is possible because we have domain-specific prior knowl-
edge of the possible dynamics, knowledge which would be
difficult to incorporate into a space of global cost functions.

4.4 Demonstrations and Feedback

As we are interested in the case where the teacher uses a
combination of demonstrations and evaluative feedback, we
also conducted a set of experiments in which, for each round,
the agent first observed a set of demonstrations of each task,
and then attempted each task on its own while the simulated
teacher provided feedback. These experiments (Figure 4)

Navigation - Wall Navigation - Doorway

Navigation - Two Rooms Navigation - Three Rooms

£ £ £ £
% 100 F T T T T T T T T] ‘;?_’ 100 F T T T T T T T T . % 100 F T T T T T |_ |_ :] g 100 F T T T T T T T]
T oep o =7 1 & oo LT g 8Op s -7 1 § ®r -
s 60 . s 60 - . s 60F . s 60 .o E
£ £ 9 £ £ L= .7
g 40 B g 40 B g 40 B g 40F 1
o) o o
5 00, vy 1 s 20y vy 10 O,y s O T
ES ES B B

12 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10

rounds rounds rounds rounds
Gravity - Choices Gravity - Flip Farming - Two Fields Farming - Three Fields

c c c c
% 100 F T T T l_ l— L —l _l] % 100 F T T l»li l- I, l _l] g 100 F l : LINL I N SR L % 100 F l _l_l’l_l_ T T]
5 ef~s 1 T ef~s " 1 T ef 1 & eof .
L ’ L g L L
E 60 1 g 60 1 g 60 1 g 60 - 1
g 40 B E 40 B Z 40 B Z 40F 1
o o 3 3
s 00, v v vy 1 s 2y v 10 Py s 0 T
® ES ES £

1.2 3 4 5 6 7 8 9 10 1.2 3 45 6 7 8 9 10 12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10

rounds rounds

BAM

Model-Based IRL = =

rounds rounds

Behavioral Cloning

Figure 4: The total return (averaged over 50 episodes) of the policies learned by BAM, model-based IRL, and behavioral cloning, as a
percentage of the total return for the optimal policies, learning from demonstrations and feedback combined. Curves are averages over 50

separate agents learning from scratch.

show a major improvement for model-based IRL in most
domains, though BAM still has an advantage in the nav-
igation environments. The improvements for model-based
IRL the farming and gravity domains largely reflect the fact
that the agent can now explore the environment under its
own policies, and can therefore directly observe transitions
that would not have been seen during the teacher’s optimal
demonstrations. This exploration is less valuable in the nav-
igation domain, however, as the space of dynamics mod-
els is much more complex. Inferring the dynamics from the
teacher’s behavior is still more efficient in this domain than
requiring that each obstacle be directly observed. As learn-
ing from feedback only (no demonstrations) in our domains
proved to be very inefficient for all three algorithms, we did
not evaluate BAM when learning from feedback alone.

5 Human-Subjects Experiments

As the purpose of this work is to allow non-expert humans to
teach agents with less effort than is possible with existing ap-
proaches, we need to determine whether the BAM algorithm
actually reduce this effort for real human teachers. We there-
fore compared BAM against the model-based IRL and be-
havioral cloning algorithms from Section 4.1 in a web-based
user study in which participants each trained several learning
agents in the four environments shown in Figure 1. Partici-
pants were recruited through the Amazon Mechanical Turk
platform, and were paid $3.00 US for completing the exper-
iment. Each participant was randomly assigned to either the
navigation or farming domain, and went through a brief tu-
torial showing them how to use the training interface in that
domain. Participants assigned to the navigation domain first
taught three agents in the Two Rooms environment, and then
taught three agents in the Doorway environment. Those as-
signed to the farming domain first taught agents in the Two
Fields environment, and then in the Three Fields environ-
ment. Between both domains we had a total of 58 unique

participants who completed the study, out of 129 (possibly
non-unique) participants who began the experiment. These
participants spent an average of 33 minutes (std. deviation
17 minutes) working on the study (including the tutorial).

5.1 Learning Sessions

Participants taught one agent at a time, and could not return
to an agent after moving on to the next one. The interface
shown to the participants allowed them to take control of
the agent and demonstrate a task, or ask the agent to try and
perform the task itself. During demonstrations, the partici-
pant controlled the agent using the arrow keys to move up,
down, left, or right. While the agent was acting on its own,
participants had the option of providing positive and nega-
tive feedback using the keyboard as well. Participants were
prompted to reset the environment to a random initial state
after a task was completed, and had the option of moving
the agent to desired start locations themselves. The partici-
pant could switch between tasks at any time, and the agent
would associate any demonstrated action or feedback signal
with the currently selected task. Participants were required
to provide at least one demonstrated action for each task be-
fore being allowed to move on to teaching the next agent.
We compared the BAM algorithm against both behavioral
cloning and model-based IRL. Participants were asked to
train three agents in both of the environments they encoun-
tered, with each agent being controlled by a different learn-
ing algorithm. The order in which these algorithms were pre-
sented was randomized for each participant, and each agent
was rendered with a different color to highlight the fact that
it did not know what the previous agents had learned. The
learning agents themselves were configured identically to
the ones used in the simulation experiments (see Section 4).
Learning updates only occurred after the participant ended a
demonstration or an evaluation episode. Because the teacher
had no way to demonstrate remaining in the same location,

Table 1: Results of the Mechanical Turk user study. Learning sessions were evaluated on whether the agent’s policies reached
50% and 80% of the optimal total return, and on the number of episodes and the number of actions (under either the teacher
or the agent’s control) required on average to reach these thresholds. (*) indicates that a value is significantly worse (p < 0.05,
t-test or Fisher’s exact test) than the value for BAM, while (7) indicates that the result remains significant under a Benjamini-
Yekutieli (Benjamini and Yekutieli 2001) correction for multiple comparisons (with a false discovery rate of 20%).

Total Sessions | Successful | Episodes Required | Actions Required
Two Rooms 50% | 80% 50% 80% 50% 80%
BAM 27 24 14 7.0 9.9 164.2 2159
Model-Based IRL 27 25 *6 74 12.8 168.1 258.5
Behavioral Cloning 27 17 *+1 8.4 20.0 207.3 461.0
Doorway 50% | 80% 50% 80% 50% 80%
BAM 27 19 5 9.7 14.7 167.4 217.6
Model-Based IRL 27 18 4| *12.9 *26.6 2154 | *441.2
Behavioral Cloning 27 12 4 | *t13.7 *27.7 271.0 | *517.7
Two Fields 50% | 80% 50% 80% 50% 80%
BAM 31 27 18 2.8 3.6 61.4 87.6
Model-Based IRL 31 27 12 | *t4.4 *16.5 | *1103.1 131.0
Behavioral Cloning 31 | *f10 | *0 | *{8.4 N/A | *272.1 N/A
Three Fields 50% | 80% 50% 80% 50% 80%
BAM 31 24 20 1.3 1.6 26.9 29.8
Model-Based IRL 31 22 12 *1.8 *12.4 | *138.3 | *753.0
Behavioral Cloning 31 17 2| *2.7 7.5 *162.8 | *201.5

at the end of a demonstration a synthetic no-op action was
shown to the agent to allow it to identify goal states.

5.2 Results

Table 1 shows the number of learning sessions in which the
total return of the agent’s policies reached 50% and 80%
of the optimal total return, as well as the average number
of episodes (including demonstrations and agent-controlled
episodes) and individual actions (both teacher and agent ac-
tions) required for the agent to reach these thresholds. The
total return was estimated by running each of the agent’s
learned policies for 1000 simulated episodes. We can see in
Table 1 that BAM dominates the alternative algorithms in
almost every case, save for the 50% threshold in the Two
Rooms environment. For the 80% threshold in particular,
BAM reduces the number of actions and episodes required
across all four environments, and is more likely to reach 80%
of the optimum. Multi-way ANOVA’s (with algorithm, en-
vironment and session order as factors) show that BAM’s
advantages over model-based IRL and behavioral cloning in
terms of the number of episodes and actions needed to reach
the 50% and 80% thresholds are significant (p < 0.01).
Fisher’s exact test’s (for all environments combined) show
that BAM’s superior success rates versus the alternatives at
the 80% threshold are also significant (p < 0.01).

More specifically, in the Two Rooms environment (rows 3
to 5), Fisher’s exact test shows that the difference in the num-
ber of sessions using BAM (14 sessions) and model-based
IRL (6 sessions) that reached the 80% threshold is signifi-
cant (p = 0.047). In the Doorway environment (rows 7 to 9),
t-tests also show that BAM requires significantly (p < 0.05)
fewer actions and episodes than the alternatives to reach the
80% threshold. To address multiplicity, we also perform a

Benjamini- Yekutieli (Benjamini and Yekutieli 2001) correc-
tion on all of the environment-specific comparisons. Though
some results are no longer significant under this correction,
BAM’s advantages over model-based IRL in terms of the
number of episodes required at the 80% threshold (column
6), and in terms of the number of actions required to reach
the 50% threshold (column 7), are still significant in both
the Two Fields and Three Fields environments. These results
demonstrate that BAM is more efficient and more reliable
in learning from human teachers than model-based IRL or
behavioral cloning, meaning that an agent using BAM can
learn more complex sets of behaviors than the alternatives,
with no additional effort on the part of the teacher.

6 Conclusions

In this work, we have presented a novel approach to inter-
active learning that takes full advantage of a teacher’s un-
derstanding of the learning agent’s environment. We have
shown that BAM dominates existing approaches (which ig-
nore the teacher’s dynamics knowledge) across many dif-
ferent domains and measures of teacher effort. Future work
will focus on scaling BAM to more complex problems. This
includes replacing exact value iteration with sparse search
in BAM’s planning model, along the lines of (MacGlashan
and Littman 2015). In many domains however, building a
sufficiently accurate one-step model may be difficult, and
so we are also interested in finding compact, high-level dy-
namics models (e.g. the value iteration networks developed
in (Tamar et al. 2016)) that capture the teacher’s knowledge
of the environment. Finally, we are particularly interested
in implementing BAM on physical robots, a key application
area for interactive learning. Overall, we are extremely en-
couraged by BAM’s performance in reducing teacher work-

load both in simulation and when learning from real humans,
and our results provide a strong foundation for future work
applying this approach to real-world domains.

References

Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
Twenty-First International Conference on Machine Learn-
ing. ACM.

Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems 57(5):469 — 483.

Atkeson, C. G., and Schaal, S. 1997. Robot learning from
demonstration. In Proceedings of the Fourteenth Interna-
tional Conference on Machine Learning, volume 97, 12-20.

Bain, M., and Sammut, C. 1995. A framework for be-
havioural cloning. In Machine Intelligence 15.

Benjamini, Y., and Yekutieli, D. 2001. The control of the
false discovery rate in multiple testing under dependency.
Annals of statistics 1165-1188.

Bloem, M., and Bambos, N. 2014. Infinite time horizon
maximum causal entropy inverse reinforcement learning. In
Decision and Control (CDC), 2014 IEEE 53rd Annual Con-
ference on, 4911-4916. IEEE.

Boularias, A.; Kober, J.; and Peters, J. 2011. Relative
entropy inverse reinforcement learning. In Proceedings of
the Fourteenth International Conference on Artificial Intel-
ligence and Statistics, 182—189.

Brafman, R. L., and Tennenholtz, M. 2002. R-max-a gen-
eral polynomial time algorithm for near-optimal reinforce-

ment learning. Journal of Machine Learning Research
3(Oct):213-231.

Deisenroth, M., and Rasmussen, C. E. 2011. Pilco: A model-
based and data-efficient approach to policy search. In Pro-
ceedings of the 28th International Conference on machine
learning (ICML-11), 465—472.

Herman, M.; Gindele, T.; Wagner, J.; Schmitt, F.; and Bur-
gard, W. 2016. Inverse reinforcement learning with simul-
taneous estimation of rewards and dynamics. In Artificial
Intelligence and Statistics, 102-110.

Knox, B.; Stone, P.; and Breazeal, C. 2013. Training a robot
via human feedback: A case study. In Social Robotics, vol-
ume 8239 of Lecture Notes in Computer Science. 460—470.

Loftin, R.; Peng, B.; MacGlashan, J.; Littman, M. L.; Taylor,
M. E.; Huang, J.; and Roberts, D. L. 2016. Learning behav-
iors via human-delivered discrete feedback: modeling im-
plicit feedback strategies to speed up learning. Autonomous
Agents and Multi-Agent Systems 30(1):30-59.

MacGlashan, J., and Littman, M. L. 2015. Between imita-
tion and intention learning. In IJCAI, 3692-3698.

Neu, G., and Szepesvari, C. 2007. Apprenticeship learning
using inverse reinforcement learning and gradient methods.
In Proceedings of the Twenty-Third Conference on Uncer-
tainty in Artificial Intelligence, 295-302. AUAI Press.

Ng, A. Y., and Russell, S. J. 2000. Algorithms for inverse
reinforcement learning. In Proceedings of the Seventeenth
International Conference on Machine Learning, 663-670.

Pomerleau, D. A. 1989. Alvinn: An autonomous land vehi-
cle in a neural network. In Advances in neural information
processing systems, 305-313.

Ramachandran, D. 2007. Bayesian inverse reinforcement
learning. In Proceedings of the Tventieth International Joint
Conference on Artificial Intelligence.

Ross, S.; Gordon, G.; and Bagnell, D. 2011. A reduction of
imitation learning and structured prediction to no-regret on-
line learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, 627-635.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
mdps and semi-mdps: A framework for temporal abstrac-
tion in reinforcement learning. Artificial intelligence 112(1-
2):181-211.

Syed, U.; Bowling, M.; and Schapire, R. E. 2008. Appren-
ticeship learning using linear programming. In Proceedings

of the 25th international conference on Machine learning,
1032-1039. ACM.

Tamar, A.; Wu, Y.; Thomas, G.; Levine, S.; and Abbeel, P.
2016. Value iteration networks. In Advances in Neural In-
formation Processing Systems, 2154-2162.

Vroman, M. C. 2014. Maximum likelihood inverse rein-
forcement learning. Ph.D. Dissertation, Rutgers The State
University of New Jersey-New Brunswick.

Appendix A User Interface for Human-Subjects Experiments

Tutorial
Tasks ‘ Reset Environment ‘
Top
‘ Start Demonstration ‘
‘ Bottom ‘

‘ Start Robot ‘

®

You can show the robot what to do by controlling it yourself. To start, practice moving the robot around
using the ARROW keys. You can move the robot up, down, left and right.

Figure 5: A screen shot of the user interface for the user study conducted through Amazon Mechanical Turk. The interface is currently in
the tutorial mode for the navigation domain.

Tutorial

Tasks

‘ Reset Environment ‘

‘ Start Demonstration ‘

‘ Grass ‘

‘ Crops ‘

‘ Start Robot ‘

You can show the robot what to do by controlling it yourself. To start, practice moving the robot around
using the ARROW keys. You can move the robot up, down, left and right.

Figure 6: A screen shot of the user interface for the user study conducted through Amazon Mechanical Turk. The interface is currently in
the tutorial mode for the farming domain.

Appendix B Experimental Environments

(a) Navigation - Wall (b) Navigation - Doorway
(c) Navigation - Two Rooms (d) Navigation - Three Rooms

Figure 7: The four navigation environments used in the simulated teacher experiments, including the Doorway and Two Rooms environments
used in the human subjects experiments. Orange circles indicate goal locations, with each goal defining a different task. White squares indicate
states blocked by obstacles.

(a) Gravity - Flip (b) Gravity - Choices

Figure 8: The two gravity environments used in the simulated teacher experiments. Orange circles indicate goal locations, with each goal
defining a different task. Arrows indicate states that change the direction of the gravity, but the agent can only see the color of these arrows,
not their direction. The unknown dynamics consist of the mapping from colors to gravity directions.

(a) Farming - Two Fields (b) Farming - Three Fields

Figure 9: The environments used in both the simulated teacher and human subjects experiments. Target Fields are highlighted with green
squares, with each target field defining a different task. Also visible are the agent itself (the blue drone), and the three farm implements (only
the plow and sprinkler are available in (b)).

Navigation - Wall

100 F LI —

80 |-
60 [~
40 -
20 -

% of optimal total return

3 45 6 7 8 9

rounds

Gravity - Choices

100 F LI —

80 |-
60 [
40 -
20

% of optimal total return

3 45 6 7 8

©
o

rounds

% of optimal total return

% of optimal total return

100
80
60
40
20

100
80
60
40

20 |

Appendix C Simulation Results

Navigation - Doorway

1 2

rounds

3 45 6 7 8

Gravity - Flip

1.2 3 4 5 6 7 8 9

BAM

rounds

Model-Based IRL =

10

% of optimal total return

% of optimal total return

100
80
60
40
20

100
80
60
40
20

Navigation - Two Rooms

3 45 6 7 8 9

rounds

Farming - Two Fields

3 4 5 6 7 8 9 10

rounds

Behavioral Cloning

% of optimal total return

% of optimal total return

100
80
60
40
20

100
80
60
40

20 -

Navigation - Three Rooms

12 3 4 5 6 7 8 9

rounds

Farming - Three Fields

12 3 4 5 6 7 8 9

rounds

Figure 10: The total return (averaged over 50 episodes) of the policies learned by BAM, model-based IRL, and behavioral cloning, as a
percentage of the total return for the optimal policies. Total return is the sum of the returns for each task. Curves are averages over 50 separate
agents learning from scratch. Shaded regions show the standard errors of the means.

Navigation - Wall

£
% 100 T T T T T T |—
IS e e
3 80 i * =
g 60 b
£ 40 b
o
B 20 1 1 1 1 1 1 1 1
X

12 3 4 5 6 7 8 9 10

rounds
Gravity - Choices

c
S
®
©
S
g
g 40F B
o
“6 20- 1 1 1 1 1 1 1 1
X

1.2 3 4 5 6 7 8 9 10

rounds

% of optimal total return

% of optimal total return

100
80
60
40
20

100

Navigation - Doorway

= -~
C 1 1 1 1 1 1 1 1
172 3 4 5 6 7 8 9 10
rounds
Gravity - Flip
LI P e e e e e
|

4 5 6 7 8 9

rounds

BAM

% of optimal total return

% of optimal total return

100
80
60
40
20

100
80
60
40
20

Model-Based IRL =

Navigation - Two Rooms

3 4 5 6 7 8 9 10

rounds

Farming - Two Fields

T SR TR T T |
4 5 6 7 8 9

rounds

L
1.2 3 10

- Global Cost == = =

% of optimal total return

% of optimal total return

100
80
60
40
20

100
80
60
40
20

Navigation - Three Rooms

3 4 5 6 7 8 9

rounds

Farming - Three Fields

DA -
o

;\‘..vhd
Lo = 4

T SR TR T T |
4 5 6 7 8 9

rounds

L
1.2 3 10

Figure 11: The total return (averaged over 50 episodes) of the policies learned by BAM, model-based IRL, and model-based IRL with global
costs, as a percentage of the total return for the optimal policies. Total return is the sum of the returns for each task. Curves are averages over
50 separate agents learning from scratch. Shaded regions show the standard errors of the means.

Navigation - Wall Navigation - Doorway Navigation - Two Rooms Navigation - Three Rooms

£ £ £ £
5 100 F T T T T T T T] % 100 F T T T T T T T] % 100 F T T T T T T T] % 100 F T T T T T T T]
K] - 4 K] - . © - - © - .
2 80 g 80 2 80 2 80
T 60F 1 = 60f 1 = ©60f 41 ® 60f B
£ £ £ £
= 40 41 £ 40Ff 1 g5 4of 1 8 40f]
=] =] =] =]
5 20C vy 1 s 0F v 1 s 0y 1 0y T
R® B B B

1.2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10

rounds rounds rounds rounds
Gravity - Choices Gravity - Flip Farming - Two Fields Farming - Three Fields

c c c c
N e e e e T O e e PN e, s e T PN o s e
8 80 [— g 80 [4 8 80 [b 8 80 [1
T 60 |- - T 60 |- - T 60 |- - T 60 | -
£ £ £ £
Z 40F 4 - 4 Z 40F 4 g 40F B
o o o o
5 20C vy vy 1 0F v 1 0y 1 Oy T
=® = = <

1.2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10

rounds rounds rounds rounds
BAM Model-Based IRL Behavioral Cloning

Figure 12: The total return (averaged over 50 episodes) of the policies learned by BAM, model-based IRL, and behavioral cloning, as a
percentage of the total return for the optimal policies, learning from demonstrations and feedback combined. Curves are averages over 50
separate agents learning from scratch. Shaded regions show the standard errors of the means.

Appendix D

Statistical Analysis of Human subjects Experiments

Table 2: P-values for comparisons done across all environments. For each of the six measures of performance, we compare
BAM against model-based IRL, and against behavioral cloning. For the numbers of episodes and actions, we use multi-way
ANOVA’s with factors for the algorithm and the environment used for a session, and for the position of that session in the
sequence of sessions the participant completed. For the success rates, we use Fisher’s exact test, and treat the environment as a
latent value, but one which we know is independent of the choice of algorithm.

Performance Measure | Threshold | Model-Based IRL | Behavioral Cloning
Success Rate 50% 0.4276 3.926e-10
80% 1.298e-4 2.2e-16

. . 50% 6.47e-4 1.25e-12
Episodes Required | g0, 9.38¢-06 <2e-16
. . 50% 0.00376 1.20e-10
Actions Required 80% 1.92e-4 1.34e-14

Table 3: Raw p-values for the environment specific comparisons against BAM. For the success rates in each environment,
Fisher’s exact test is used, while unpaired t-tests are used for the number of episodes and actions required.

Environment | Performance Measure | Threshold | Model-Based IRL | Behavioral Cloning
Success Rate 50% 1 5.367713e-02

80% 4.727039e-02 1.291742¢-04

. . 50% 0.7058005 0.2355695

Two Rooms Episodes Required 80% 0.11362855 N/A
Actions Required 50% 0.9153665 0.1368809

80% 0.3346513 N/A

Success Rate 50% 1 9.777568e-02

80% 1 1

Doorway Episodes Required 50% 4.159614e-02 7.416946e-03
80% 3.728851e-02 4.383471e-02

Actions Required 50% 0.1120207 5.307102e-02

80% 4.483479¢-02 4.535574e-02

Success Rate 50% 1 4.309968e-06

80% 0.2035422 2.230871e-07

. . . 50% 1.252016e-04 9.592095e-05

Two Fields Episodes Required 80% 1.1976176-04 N/A
Actions Required 50% 4.849809e-03 1.767247¢-03

80% 7.011737e-02 N/A

Success Rate 50% 1 6.200178e-02

80% 4.130673e-02 2.376083e-06

. . . 50% 1.985265¢-02 5.721056e-04

Three Fields | Episodes Required 80% 1.475193¢-03 0.1536753
Actions Required 50% 4.085855e-02 2.319712e-03

80% 4.712152e-03 2.819027e-02

