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1 Introduction

Recently, a number of approaches have been developed which allow for approximate Bayesian
inference over the parameters of large neural networks. These algorithms can be more robust
against overfitting, and can provide useful estimates of model uncertainty. In domains such as active
learning Golovin et al. (2010) and Bayesian reinforcement learning (Vlassis et al., 2012), an ideal
learner needs to not only estimate the posterior given the current training data, but also needs to
reason about how new observations might affect that posterior, so that new data can be collected as
efficiently as possible. We argue that existing batch techniques for Bayesian neural networks are not
well suited to such online inference, and in this preliminary work we discuss ways in which these
algorithms can be adapted to allow for efficient online inference.

If we view the active learning problem as a special case of the Bayesian reinforcement learning
problem, we can see that selecting new instances requires searching through a set of unlabeled
instances, and evaluating the quality of the posterior when new instances are added to the training
data. We therefore require algorithms which can efficiently update the current posterior to take into
account new instances, and which accurately estimate the change in the posterior resulting from the
new data. Here we describe a potential approach to this problem, in which a variational estimate
of the posterior is represented by two sets of parameters, one of which is used to estimate the prior
based on the current data, and the other used to perform online updates with hypothetical data. We
also describe how contextual information about the learning task may be used to find posterior
approximations that are better suited to online inference. The main goal of this work however is to
motivate further research into the problems of online inference in Bayesian neural networks.

2 Interactive Learning

To motivate this work, we consider a hypothetical interactive learning problem in which one or more
human teachers provide labels y for instances x selected by the learner. The learner is given some
initial labeled data D and a prior p(ŵ) over the connection weights, accumulated in ŵ, for a neural
network that is assumed to have generated the labels. The learner is then presented with a set C of
unlabeled instances, drawn from some unknown joint distribution r(C), and will be asked to provide
a label some for randomly selected x ∈ C. Before labeling x, the learner can select a number of
other instances from C and ask the human teacher to provide labels for these instances.

We call the set C a context, and we assume that certain instances are more likely to co-occur within
the same context. For example, a household robot, being taught recognize objects, might first be
taught about objects in the kitchen, and then in the living room, such that the robot can only request
labels for objects in its immediate vicinity. Training data for an image classifier might be collected
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from a number of users, each of whom provides a separate set of images, and only provides labels for
their own images.

Ideally, the learner should first compute the batch posterior p(ŵ|D), and then compute the online
posterior p(ŵ|D, o) for each possible observation o, where an observation is a set of pairs (xi, yi)
of instances in the context C, along with possible labels for those instances. The learner evaluates
each posterior in terms of the expected accuracy of the resulting label for the target x under that
posterior, and chooses the set of instances that maximizes the expected accuracy over different
possible labelings. Where only approximate inference is possible, the performance of the learner will
depend on the accuracy of the batch and online posterior approximations, and in particular on how
well the approximation captures the dependencies between instances that are likely to occur in the
same context. We will see that, when some information about context is available in the initial data
D, it is possible to incorporate that knowledge into the batch approximation to improve the quality of
the online approximations.

3 Online vs. Batch Inference

For this interactive learning problem, we first find an approximation of the batch posterior conditioned
on all the existing training data, and then approximate a large number of online posteriors given
potential observations. Existing variational approaches based on optimization Gal and Ghahramani
(2015) are in general not well suited to online inference because 1) estimating the posterior given
a single new data point requires optimization over the entire data set and 2) the influence of any
single data point on the the posterior may be small, and so may not be adequately captured by the
global approximation. Approaches based on Assumed Density Filtering (AFD) and Expectation
Propagation (EP) (Minka, 2001) do allow for online updates, as the update for a single data point
explicitly estimates the posterior given that point, rather than simply adjusting the approximation
in the direction of that posterior. While AFD techniques such as probabilistic backpropagation
(PBP) (Hernández-Lobato and Adams, 2015) and expectation backpropagation (EBP) (Soudry et al.,
2014) can be applied simultaneously to estimate both the batch and online posteriors, using AFD
for batch inference may not always be desirable, as AFD relies on approximations that my not be
accurate for some network representations, and may not converge when applied repeatedly through
Expectation Propagation.

As online and batch inference have very different requirements, it makes sense to choose a framework
in which the algorithm used for online inference can be selected and tuned independently of that used
for batch inference. We can define a variational distribution q(ŵ;φ, θ), where θ are the parameters
of the batch posterior (encoding the existing data D), while φ are the parameters of the online
posterior (encoding a new observations o). We define a set of default online parameters φ̄, such that
the batch posterior is represented by q(ŵ; φ̄, θ). For each potential observation o, we can compute
parameters φo, of the approximate online posterior q(ŵ;φo, θ). With this representation, we can use
very different algorithms for finding θ and φ.

As a concrete example, we can represent the weight distribution of a connection between nodes i and j
as wij ∼ N (θij + φµij , θ
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ij), where φµ are the online means and φν are the online variances, such

that all wij are independent. If we set φ̄µ = 0 and φ̄ν = 1, then we can see that the batch posterior
has the same form as that learned by DropConnect Wan et al. (2013), with Gaussian noise, while
the online posterior is of the form used by probabilistic backpropagation (PBP). It has been shown
that dropout training algorithms can be seen as a form of variational inference Gal and Ghahramani
(2015), and so we can use backpropagation with DropConnect to learn θ for the batch posterior
q(ŵ; φ̄, θ). We can then use PBP to estimate the parameters φo of the online approximations for each
possible observation o, starting with q(ŵ; φ̄, θ) as the prior.

4 Alternative Variational Objective

The use of the batch posterior as a starting point for subsequent online inference suggests that
the standard variational objective DKL(q(ŵ; φ̄, θ)‖p(ŵ|D)) may not always be the best choice for
learning the batch approximation, for two main reasons. First, the batch posterior defined by θ may
conflict with the approximations used for online inference. The online parameters might only be
applied to a subset of the connection weights, in which case, for certain values of θ the connections
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covered by φ may not have a strong influence on the output of the network, such that the approximate
online posteriors will not differ significantly from the batch posterior. Second, the variational
approximation may not capture the most important dependencies between the outputs of the network
for different instances. This is where the idea of context becomes important, as it is more important
to capture covariances between instances that are likely to appear in the same context. Similarly,
context can help resolve the first issue of mismatched approximations, by indicating which online
updates need to be the most accurate.

If the initial data set D includes contextual information, we can design an objective function for θ
that takes into account the importance of accurately capturing the relationships between instances
in the same context. We assume that the initial data D is divided into M sets Di, which we refer to
as contexts, each composed of Ni �M instances xij and labels yij . Furthermore, we assume that
the instances in each set Di are drawn from the context distribution r(C) that will be used during
online learning. We wish to find θ such that the approximate online posterior q(ŵ;φo, θ) accurately
estimates the label distribution for instance x, when x and the instances of observation o are found in
the same context. To do this, we can divide each context Di into a training set Dtrain

i and test set
Dtest
i , and define the variational objective function as

F (θ;Dtest, Dtrain) =
∑
i

∫
ŵ

q(ŵ; φ̄, θ)
∑

j∈Dtrain
i

log p(yij |xij , ŵ)

+ q(ŵ;φiθ, θ)
∑

j∈Dtest
i

log p(yij |xij , ŵ)

 dŵ − DKL[q(ŵ; φ̄, θ)‖p(ŵ)],

where φiθ are the parameters of the approximations of p(ŵ|Dtrain, Dtest
i ) computed using the online

update algorithm. This objective function balances between the quality of q(ŵ;φ, θ) as an approx-
imation of p(ŵ|Dtrain), and the quality of q(ŵ;φiθ, θ) as an approximation of p(ŵ|Dtrain, Dtest

i ).
In doing so, it sacrifices some of the data D, and some degree of accuracy of the batch posterior
q(ŵ; φ̄, θ) to improve the predictive accuracy of the online posteriors q(ŵ;φo, θ). The the specific
algorithm for the optimization of θ under this objective will depend heavily on the algorithm used for
online inference, as the online parameters φiθ may not be differentiable with respect to θ.

5 Conclusion

Many of the most interesting applications of Bayesian methods depend on the ability to reason about
changes in a learner’s belief, both in response to new observations, and in response to possible
actions the learner could take. Here we have discussed some of the difficulties that arise in applying
Bayesian neural networks to applications requiring such online inference, including the limitations
of variational methods, and the risks of choosing poor approximations of batch posteriors. The
algorithmic framework described here provides a potential starting point for future work on these
issues, and more importantly, illustrates some of the specific areas in which inference techniques
can be improved with respect to online applications. This work highlights the need for variational
algorithms which explicitly consider how their posterior estimates will be used, and the value of
techniques that allow large numbers of related online updates to be performed efficiently. At the
same time however, this work suggests that extremely difficult inference problems such as Bayesian
reinforcement learning may be feasible even with with large neural networks.
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