Convergent Actor Critic by Humans

James MacGlashan', Michael L. Littman!, David L. Roberts?, Robert Loftin?, Bei Peng?, and
Matthew E. Taylor®

Abstract— Programming robot behavior can be painstaking:
for a layperson, this path is unavailable without investing
significant effort in building up proficiency in coding. In
contrast, nearly half of American households have a pet dog
and at least some exposure to animal training, suggesting an
alternative path for customizing robot behavior. Unfortunately,
most existing reinforcement-learning (RL) algorithms are not
well suited to learning from human-delivered reinforcement.
This paper introduces a framework for incorporating human-
delivered rewards into RL algorithms and preliminary results
demonstrating feasibility.

I. INTRODUCTION

Programming robots is very difficult, in part because
the real world is inherently rich and—to some degree—
unpredictable. Nevertheless, for robots to have a significant
impact on the lives of individuals, even non-programmers
need to be able to specify and customize their behavior.

Reinforcement learning (RL), in which the human trainer
provides the feedback, provides a compelling alternative to
programming, because agents can learn complex behavior
from very simple positive and negative signals. Furthermore,
real-world animal training is an existence proof that people
can train complex behavior using such simple signals.

However, traditional RL algorithms have yielded limited
success when the reward signal is provided by humans and
has largely failed to benefit from the sophisticated training
strategies that expert animal trainers use with animals. This
failure has led to the development of new RL algorithms that
are designed to learn from human-generated rewards and in-
vestigation into how people give interactive feedback [6]. In
general, many of these human-centered learning algorithms
are built on the insight that humans tend to give feedback as a
comment on the policy the agent is following, rather than as
a numeric value that is meant to be maximized by the agent.
While this insight seems accurate, existing approaches use
interpretations of feedback that fail to account for, or explain,
the different ways in which people give feedback.

We advocate that the advantage function is a better inter-
pretation of human feedback that can be straightforwardly
incorporated into actor-critic RL algorithms. The advantage
function roughly corresponds to how much better taking
some action in a state is than following the current policy in
that state, and motivates feedback strategies often incorpo-

This work was supported in part by NSF grants [IS1348109, 1IS1319412,
and 1IS1643614. 1 Brown University Computer Science Department, 2
North Carolina State University Department of Computer Science, 3 Wash-
ington State University School of Electrical Engineering and Computer
Science

rated by people, but not captured by existing human-centered
RL algorithms. For example:

1) Initially give positive feedback for an action and then
withdraw the feedback for the same action with time.

2) Provide feedback of different magnitudes with respect
to the quality of improvement in behavior.

3) Give positive feedback for suboptimal, but sufficient,
actions, and then raise the quality standard necessary
for positive feedback over time.

The first strategy reduces the burden on the trainer while the
other two allow for explicit behavior shaping.

This paper argues that learning from human reward is
a natural fit for actor-critic algorithms, presents one such
algorithm, and provides proof of concept results, showing
the feasibility of this approach.

II. BACKGROUND

We formulate the problem using a Markov Decision Pro-
cess (MDP). An MDP is a 5-tuple: (S, A, T, R,), where S
is the set of possible states of the environment; A is the set
of actions available to the agent; T'(s'|s, a) is the transition
function, which defines the probability of the environment
transitioning to state s’ € S when the agent takes action
a € A in environment state s € S; R(s,a,s’) is the reward
function specifying the numeric reward the agent receives
for taking action a in state s and transitioning to state s’;
and v € [0,1] is a discount factor specifying how much
immediate rewards are preferred to more distant rewards.

The goal is to find an optimal policy 7* that maximizes the
expected future discounted reward. The state value function
is the expected future discounted reward from each state
when following some policy m: V7 (s) = E[>_ oo v're|so =
s, m|. Similarly, the state-action value function is Q7 (s, a) =
EY- 207 relso = s,a0 = a, 7).

Bhatnagar et al. [1] provides a general template for
actor-critic algorithms, shown in Algorithm |1} Actor-critic
algorithms are named for the two main components of the
algorithms: the actor is a parameterized policy that dictates
how the agent selects actions; the critic estimates the value
function for the actor and provides critiques after each
action selection (used to update the policy parameters). The
critique is often the temporal difference (TD) error: §; =
ry + vV (st) — V(s¢—1), which describes how much better
or worse things went than expected. The main difference
between different actor-critic algorithms is how the critic’s
value function and actor’s policy parameters are updated.
When states (or actions) are continuous, actor-critic algo-

Algorithm 1 Actor-Critic Template
Input: parameterized policy mp,, value function Vj
observe initial state s
for ¢ =0 to co do
select and execute action a ~ 7, (s¢, *)
observe next state s;41 and reward 741
compute TD error 0; = 7441 + YVi(st41) — Vi(se)
update V; to V14 > Algorithm Specific
update 0; to 0,11 using &, > Algorithm Specific

rithms typically employ function approximation for the value
function and policy to generalize experience.

III. HUMAN-CENTERED REINFORCEMENT LEARNING

We define a human-centered reinforcement learning
(HCRL) problem as a learning problem in which an agent is
in an MDP but rewards do not come from the environment.
Instead, a human trainer has a target policy 7* she is trying
to teach the agent. The trainer communicates this policy by
providing positive and negative feedbacks. The goal of the
agent is to learn the target policy 7* from these feedbacks.

If the human trainer gives stationary rewards that the
agent is meant to maximize, standard RL algorithms could
be used. Although there has been some success with this
approach [13] there are complications. In particular, a trainer
must take care that the feedback strategy she uses contains
no unanticipated exploits, which in turn limits the space of
feedback strategies she can use. Indeed, prior research has
shown that when people give feedback to artificial agents,
they often unintentionally induce positive cycles if their
feedback is interpreted as reward to be maximized [3], [4].
A positive cycle is a feedback pattern that is maximized by a
looping behavior that endlessly accrues a net positive return.

Instead, we take the stance that rather than considering
reward as fixed, we treat it as commenting on the agent’s
behavior. Positive feedback roughly corresponds to “yes, that
was good” and a negative feedback roughly corresponds to
“no, that was bad.”

The advantage function A™ is defined as A™(s,a) =
Q™ (s,a)—V7™(s). Roughly speaking, the advantage function
describes how much better or worse an action selection is
compared to the current expected behavior.

We next consider one example training strategy that a
human trainer may leverage, as motivated in the Introduction.
When a diminishing returns strategy is employed by a
trainer, positive feedback is reduced as the agent begins
to consistently take the correct action in that context. It
is formalized in MDP terms as follows. Without loss of
generality, consider state s with exclusively optimal action
a, and an initial policy 7 that does not consistently select
action « in state s (mp(s,a) < 1) and for which switching
to action a would constitute a policy improvement. The
diminishing returns strategy entails that the initial feedback
for taking action a in state s will be positive, but goes to
zero as m¢(s,a) — 1. This strategy is primarily useful to a
trainer as a means to limit how actively they have to respond
to every behavior, allowing them to focus their attention to

contexts in which the agent has not yet learned the correct
behavior. It also serves as a means to indicate that the agent
should not change anything in that context.

To show that assigning feedback according to the advan-
tage function reproduces the diminishing returns strategy,
first note that if switching to action a constitutes a policy
improvement to 7o, it follows that Q™ (s,a) > V7™ (s,a);
therefore, A™ (s,a) > 0, thereby yielding an initially pos-
itive feedback for taking action a in state s. Moreover, as
m(s,a) goes to one, A™(s,a) goes to zero, because V™ (s) is
defined as a linear combination of the Q-values, where the
weights are the probability of each action being taken.

This is one example of how a reasonable human training
strategy can be incorporated into the actor-critic framework,
motivating our choice of framing. Showing that other training
strategies, including those in the Introduction, can fit into the
actor-critic framework is left for future work.

IV. CONVERGENT ACTOR CRITIC BY HUMANS

If the advantage function is a useful model for human
feedback, an appropriate learning algorithm is one that
can learn from the advantage function. Fortunately, actor-
critic algorithms are already primed for learning from the
advantage function. Recall that actor-critic algorithms update
the agent’s policy parameters with the TD error. The TD
error, however, is simply an unbiased estimate of the advan-
tage function [1]. Therefore, if human feedback accurately
approximates the advantage function, then learning can be
performed with an actor-critic algorithm that sets the d; term
directly to the human feedback value.

Human feedback may be sparse if the agent decision
cycle is fast. Sparseness is not problematic in itself because
when the advantage function is zero, it indicates no change
to the policy. However, if feedback is going to be sparse,
it may be useful to allow the trainer to provide feedback
about a history of actions, rather than just the last action.
Eligibility traces are one way to accomplish that. In an actor-
critic RL setting, an eligibility trace is associated with each
policy parameter. It keeps track of how recently a parameter
was “active” and decays exponentially with a parameter .
Parameter updates are then performed as a product of the
trace and J; term, allowing rewards and TD errors to affect
parameters associated with much older events. Eligibility
traces can be similarly used in human advantage algorithms
to enable critiques about a history of actions.

Incorporating these considerations yields the COnvergent
Actor Critic by Humans (COACH) algorithm, with state
function approximation, in Algorithm [2] e, is an eligibility
trace vector of equal dimensionality to the number of policy
parameters and there is one for each of the different A
values provided to the trainer interface. The feedback signal
represents the sum of feedback signals given in the time
between the action execution and the resulting state being
observed—it is observed with a trainer-provided A value.
This feedback could be associated with the action event
in the past that covers the necessary delay to account for
human reaction time. All traces are updated with respect to

Algorithm 2 COACH Algorithm
Input: policy mg,, trace set A, learning rate o
Initialize traces ey < 0, VA € X
Observe initial state sq
for £ =0 to oo do
Select and execute action a; ~ 7y, (¢,)
Observe next state s¢41
Receive feedback f;41 and A from trainer
for) € X do
ey < ey +)\/Vgtﬂ'et (St,d, at,d)
Orp1 = 0 + afirren

the delayed state action event with which the feedback is
associated. Finally, the policy parameters are updated in the
direction of the trace for the A and feedback received.

V. EXPERIMENTS

This section evaluates COACH in simulated grid world
environments under two conditions: first, when a human
is not involved and reward comes from a stationary and
sparse MDP-style reward function; and second, when trained
by a human. The first condition provides insight into our
algorithm’s ability to scale to sparse feedback and allows
us to use a standard RL algorithm (designed to learn under
these assumptions) as a baseline. Results from the second
condition allow us to see how our algorithm performs where
discrete observations are noise free, global, and when human-
trainer feedback is perfectly timed with actions. It also
highlights how standard RL algorithms do not respond well
to human-generated reward, even when controlling the rest
of the environment to match their assumptions.

A. MDP-style Reward Functions

We chose two standard MDP grid worlds to compare
COACH and Q-learning. The first is “four rooms” [11]: an
11 x 11 deterministic grid world (Figure [Ta) with a single
goal location yielding a reward of 4+1 and 0 everywhere
else. The second, introduced by Russell and Norvig [10], is
a stochastic 4 x 3 grid world (Figure [Ib) with both a goal
state, yielding a reward of +1, and a failure terminal state,
yielding a reward of —1; all other steps yield a reward of
—0.04. In both grids, reaching a goal/terminal state ends the
task, starting a new episode of learning in the bottom left
corner. The agent can move in the four cardinal directions.
In the Russell-Norvig grid, actions cause the agent to move
orthogonally with probability 0.2.

For Q-learning, we tested a handful of parameters and
used the best. For COACH we used a softmax policy with
a single A\ = 0.8 trace. Figures 2a] and 2b] show the reward
per episode averaged over 10 trials. These results show that
neither algorithm has an advantage in this scenario, even
though only Q-Learning was designed explicitly for learning
in MDPs with sparse rewards. These results suggest that
COACH can scale to situations where humans give less
frequent feedback.

+1

(a) The four rooms grid

(b) The Russell-Norvig grid

Fig. 1: The grid worlds used for MDP learning.

B. Human Training: Rewarded for Reaching Goal

We next present results of a human (the first author of
this paper) training an agent using COACH, SARSA(\),
and TAMER, in four rooms with and without function ap-
proximation. Here, we use SARSA()) instead of Q-learning
because it 1) has better convergence properties when using
function approximation; and 2) because SARSA()\) with a
large) is better behaved in non-Markovian environments [7],
which human feedback often entails.

During learning, the trainer watched the agent act. After
each movement, the agent waited one second, thereby giving
the trainer sufficient time to provide a +1 or —1 feedback.

We used tabular COACH with the agent following a
greedy version of its learned soft-max policyﬂ and a single
trace with A = 0.8. For TAMER, we used the Infrequent
TAMER, which assumes that each feedback can perfectly
target the last action, and similarly used a tabular model of
the human reward. For SARSA()), we used a tabular Q-
function, a greedy policy, and A = 0.99.

Figure [2c| shows the number of time steps of training for
the first five episodes, averaged over five trials. The trainer
aggressively rewarded and punished correct and incorrect
behavior in the first episode. After that, feedback was used
more sparingly to fine tune behavior. COACH and TAMER
both learn very fast and perform similarly on this task, with
TAMER doing slightly better in the first round. TAMER’s
slightly better initial performance may be due to the fact that
TAMER’s assumption that feedback applies to only the last
action better matches the initial training strategy. COACH
could match this assumption by using (or including) a A
value of zero. SARSA()), on the other hand, is sporadic and
tended to get stuck trying to optimize positive reward cycles.
Furthermore, SARSA()\) did not converge well—the lower
feedback rates in later trials caused SARSA()\) to determine
that its estimate of the value function was wrong and it
unlearned behavior, requiring additional feedback to correct.

C. Human Training: Lure Training

Next, we attempted to perform lure training with each of
the algorithms. Lure training is a standard animal-training
“design pattern” in which an animal is first conditioned to
follow a lure that the trainer can easily manipulate (e.g., a
ball on a stick). After conditioning, the trainer uses the lure
to guide the animal through complex tasks that otherwise
would have taken the animal a long time to complete. After

I'Since we expect frequent feedback, an exploration policy is unnecessary.

0.055 i

v 0.15
0.10
0.05

0.00

Average Reward

-0.05

0.101]"

Number of Steps

0 10 20 30 40 50 60 70 80 90 100 0 10
Episode

30 40 50 60 70 80 90 100 °1
Episode y 2

[-coach—qLearning (alpha=1, epsilon=0)]

[coach — GLeaming (alpha=0.5, epsilon=0)] Episode

(a) Four rooms results

(b) Russell-Norvig grid results

(c) Human training times

Fig. 2: Average reward per learning episode for COACH (red) and Q-learning (blue) on the (a) four rooms, and (b) Russell-
Norvig grids. Bands indicate the 95% confidence interval. (c) Average human training times in four rooms for SARSA()\)

(black), TAMER (red), and COACH (blue).

being guided through the task with the lure, and rewarded at
the end, the animal is able to complete the task without the
lure (or requires only limited additional reinforcement).

For lure training, we added the ability for the trainer to
instantiate a lure in the grid world. Before training on the
full task, the agent was conditioned to follow the lure in
two separate training areas. After conditioning, the lure was
used in the full grid to guide the agent to the goal—a single
positive reward was given once, if the agent reached goal.

Of the three learning algorithms, only COACH success-
fully learned from the lure training (results not shown). After
luring the agent to the goal and giving it a single reward, the
agent was able to complete the task without the lure and
without additional feedback, showing that strategies used by
humans may be effective for training actor-critic algorithms.

D. Robot Experiments

We successfully trained a TurtleBot learning with COACH
to execute five behaviors: push pull, hide, alternate, ball
following, and target navigation using lure training. Details
of the Turtlebot experiments are omitted for space. A seven-
minute video showing this proof of concept is at https:
//www.youtube.com/watch?v=XRwYcX6eJz4l

VI. RELATED WORK

There is significant related work that allows humans to
provide reward feedback for learning agents. Most related
is work by Knox et al. [5] on the TAMER algorithm.
TAMER learns a human trainer providing positive and neg-
ative feedback, learning to greedily maximize a short-term
expectation of human reward. Other related work includes
Thomaz and Breazeal [13], which introduces an RL algo-
rithm that incorporates interactive human guidance to elicit
a significantly faster learning interaction; Tenorio-Gonzalez
et al. [12], which introduces a dynamic reward shaping
approach to learn from infrequent and inconsistent human
feedback; and Griffith et al. [2], which develops a Bayesian
approach using policy shaping. Our prior work [8], [9] differs
in that it treats the human feedback as categorical and does
not use eligibility traces or the actor-critic framework.

In general, all these works suffer if the human trainer
changes her feedback strategy over time, unlike when the
reward is modeled as the advantage function.

VII. CONCLUSION AND FUTURE WORK

This work provided two main contributions. First, we
advocated that human feedback is better modeled with the
advantage function. Second, we introduced a new actor-
critic algorithm specifically designed to learn from humans.
Preliminary experiments show encouraging results.

In the future, we plan to 1) implement additional actor-
critic algorithms that can learn from human-provided re-
wards, 2) perform human trial studies to identify how well
average end-users do at training robots using such actor-critic
algorithms, 3) provide proofs of correctness for this class of
algorithms, and 4) augment the critic so that it can combine
human-provided reward with environmental reward.

REFERENCES

[1] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee. Natural
actor-critic algorithms. Technical report, University of Alberta, 2009.

[2] S. Griffith, K. Subramanian, J. Scholz, C. Isbell, and A. L. Thomaz.
Policy shaping: Integrating human feedback with reinforcement learn-
ing. In NIPS, pages 2625-2633, 2013.

[3] M. K. Ho, M. L. Littman, F. Cushman, and J. L. Austerweil. Teaching
with rewards and punishments: Reinforcement or communication? In
Proceedings of the 37th Annual Meeting of the Cognitive Science
Society, 2015.

[4] W. B. Knox. Learning from human-generated reward. PhD thesis,
University of Texas at Austin, 2012.

[5] W. B. Knox and P. Stone. Interactively shaping agents via human
reinforcement: The tamer framework. In Proceedings of the fifth
international conference on Knowledge capture, 2009.

[6] W. B. Knox, P. Stone, and C. Breazeal. Training a robot via human

feedback: A case study. In Social Robotics, pages 460—-470. 2013.

J. Loch and S. P. Singh. Using eligibility traces to find the best

memoryless policy in partially observable markov decision processes.

In ICML, pages 323-331, 1998.

R. Loftin, B. Peng, J. MacGlashan, M. L. Littman, M. E. Taylor,

J. Huang, and D. L. Roberts. Learning behaviors via human-delivered

discrete feedback: modeling implicit feedback strategies to speed up

learning. J. of Autonomous Agents and Multi-Agent Systems, 2015.

[9]1 B. Peng, J. MacGlashan, R. Loftin, M. L. Littman, D. L. Roberts, and
M. E. Taylor. A Need for Speed: Adapting Agent Action Speed to
Improve Task Learning from Non-Expert Humans. In AAMAS, 2016.

[10] S. Russell and P. Norvig. Al a modern approach, volume 2. 2005.

[11] R. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning.
Artificial intelligence, 112(1):181-211, 1999.

[12] A. C. Tenorio-Gonzalez, E. F. Morales, and L. Villasefior-Pineda.
Dynamic reward shaping: training a robot by voice. In Advances in
Artificial Intelligence—IBERAMIA 2010, pages 483-492. 2010.

[13] A. L. Thomaz and C. Breazeal. Reinforcement learning with human
teachers: Evidence of feedback and guidance with implications for
learning performance. In AAAI, volume 6, pages 1000-1005, 2006.

[7

—

[8

=

https://www.youtube.com/watch?v=XRwYcX6eJz4
https://www.youtube.com/watch?v=XRwYcX6eJz4

	Introduction
	Background
	Human-centered Reinforcement Learning
	Convergent Actor Critic by Humans
	Experiments
	MDP-style Reward Functions
	Human Training: Rewarded for Reaching Goal
	Human Training: Lure Training
	Robot Experiments

	Related Work
	Conclusion and Future Work
	References

