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Abstract

Existing machine-learning work has shown that al-
gorithms can benefit from curriculum learning, a
strategy where the target behavior of the learner is
changed over time. However, most existing work
focuses on developing automatic methods to itera-
tively select training examples with increasing dif-
ficulty tailored to the current ability of the learner,
neglecting how non-expert humans may design cur-
ricula. In this work we introduce a curriculum-
design problem in the context of reinforcement
learning and conduct a user study to explicitly ex-
plore how non-expert humans go about assembling
curricula. We present results from 80 participants
on Amazon Mechanical Turk that show 1) humans
can successfully design curricula that gradually in-
troduce more complex concepts to the agent within
each curriculum, and even across different curric-
ula, and 2) users choose to add task complexity in
different ways and follow salient principles when
selecting tasks into the curriculum. This work
serves as an important first step towards better in-
tegration of non-expert humans into the reinforce-
ment learning process and the development of new
machine learning algorithms to accommodate hu-
man teaching strategies.

1 Introduction

Humans acquire knowledge efficiently through a highly or-
ganized education system, starting from simple concepts, and
then gradually generalizing to more complex ones using pre-
viously learned information. Similar ideas are exploited in
animal training [Skinner, 1958]—animals can learn much
better through progressive task shaping. Recent work [Ben-
gio et al., 2009; Kumar et al., 2010; Lee and Grauman, 2011]
has shown that machine learning algorithms can benefit from
a similar training strategy, called curriculum learning. Rather
than considering all training examples at once, the training
data can be introduced in a meaningful order based on their
apparent simplicity to the learner, such that the learner can
build up a more complex model step by step. The agent
will be able to learn faster on more difficult examples after
it has learned on simpler examples. This training strategy
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was shown to drastically affect learning speed and general-
ization [Bengio et al., 2009; Kumar et al., 2010].

While most existing work on curriculum learning (in the
context of machine learning) focuses on developing an au-
tomatic method to iteratively select training examples with
increasing difficulty tailored to the current ability of the
learner [Kumar et al., 2010; Lee and Grauman, 2011], how
humans design curricula is one neglected topic. A better un-
derstanding of the curriculum design strategies used by hu-
mans may lead to the development of new machine learning
algorithms that accommodate human teaching strategies. An-
other motivation for this work is the increasing need for non-
expert humans to teach autonomous agents new skills with-
out programming. A number of published works in Interac-
tive Reinforcement Learning [Thomaz and Breazeal, 2006;
Knox and Stone, 2009; Griffith et al., 2013] has shown that
reinforcement learning (RL) [Sutton and Barto, 1998] agents
can successfully speed up learning using human feedback,
demonstrating the significant role humans play in teaching an
agent to learn a (near-) optimal policy. Taylor first proposed
that curricula should be automatically designed in an RL con-
text, and that we should try to leverage human knowledge to
design more efficient curricula [2009]. As more robots and
virtual agents become deployed, the majority of teachers will
be non-experts. This work focuses on understanding non-
expert human teachers rather than finding the most efficient
way to solve our RL problem—future work will investigate
how to adapt machine learning algorithms to better take ad-
vantage of this type of non-expert curricula. We believe this
work is the first to explicitly study how non-expert humans
approach designing curricula for RL domains.

We are interested in studying whether humans can iden-
tify the concepts an agent needs to learn in the curriculum to
complete a given target task. Given that humans can arbitrar-
ily select a sequence of tasks with different level of complex-
ities, we hypothesize that humans gradually introduce more
complex concepts to the agent within each curriculum. It is
interesting to explore how humans increase task complexity
and general principles regarding efficient curricula by analyz-
ing the humans’ design processes. If we can discover salient
patterns within the curricula, we may be able to automate the
active selection of suitable tasks in a curriculum or design
new RL algorithms with inductive biases that favor the types
of curricula non-expert human teachers use more frequently.



In this work, we task non-expert humans with designing a
curriculum for an RL agent and evaluate the different curric-
ula designs they produced. Specifically, in our RL domain, an
agent needs to learn to complete different tasks that are spec-
ified with textual commands in a variety of simulated home
environments using reinforcement and/or punishment feed-
back. Human participants are told the target environment on
which the agent will be tested on, and their goal is to select a
sequence of training tasks that will result in the agent learn-
ing the target task as quickly as possible. Our results show
that 1) most users successfully identified the two most im-
portant concepts the agent needed to learn to complete the
target task when designing curricula, 2) users tended to grad-
ually introduce more complex concepts to the agent within
each curriculum, and even across different curricula, and 3)
different users chose to increase task complexity in different
ways and it was significantly affected by the ordering of the
presentation of the source tasks. We also find some interest-
ing salient patterns followed by most users when selecting
tasks into the curriculum, which could be highly useful for
the design of new RL algorithms that accommodate human
teaching strategies.

2 Background and Related Work

The concept of curriculum learning was proposed by Ben-
gio et al. [2009] to solve the non-convex optimization task in
machine learning more efficiently. Motivated by their work,
considering the case where it is hard to measure the easi-
ness of examples, Kumar ez al. [2010] developed a self-paced
learning algorithm to select a set of easy examples in each
iteration, to learn the parameters of latent variable models in
machine learning tasks. Similarly, Lee and Grauman [2011]
proposed a self-spaced approach to solve the visual category
discovery problem by self-selecting easier instances to dis-
cover first, and then gradually discovering new models of in-
creasing complexity.

Although previous work has shown that machine learn-
ing algorithms can benefit from curriculum strategies [Ben-
gio et al., 2009; Kumar et al., 2010; Lee and Grauman,
2011], there is limited work on curriculum learning in the
context of RL. However, there are several areas related to
curriculum learning for RL. Wilson ef al. [2007] explored
the problem of multi-task RL, where the agent needed to
solve a number of Markov Decision Processes drawn from
the same distribution to find the optimal policy. Sutton et
al. [2007] extended the idea of lifelong learning [Thrun,
1996] to the RL setting, considering the future sequence of
tasks the agent could encounter. Both cases assume a se-
quence of RL tasks is presented to a learner, and the goal
is to optimize over all tasks rather than only the target task.
The idea of active learning [Cohn er al, 1996] was also
exploited in RL domains [Mihalkova and Mooney, 2006;
Vigorito and Barto, 2010] to actively maximize the rate at
which an agent learns its environment’s dynamics.

Of existing RL paradigms, transfer learning [Taylor and
Stone, 2009] is the most similar to curriculum learning.
The main insight behind transfer learning is that knowledge
learned in one or more source tasks can be used to improve

Figure 1: An example five-room layout with one virtual dog,
one chair, bag, and backpack with the same color in our do-
main. It is also the target environment (target command:
“move the bag to the yellow room”) used in our user study.

learning in one or more related target tasks. However, in most
transfer learning methods: 1) the set of source tasks is as-
sumed to be provided, 2) the agent knows nothing about the
target tasks when learning source tasks, and 3) the transfer
of knowledge is a single-step process and can be applied in
different similar domains. In contrast, the goal of curriculum
learning is to design a sequence of source tasks for an agent
to learn such that it can develop progressively more complex
skills and improve performance on a pre-specified target task.
Taylor et al. [2007] first showed that curricula work in RL
via transfer learning by gradually increasing the complexity
of tasks. Narvekar et al. [2016] developed a number of dif-
ferent methods to automatically generate novel source tasks
for a curriculum, and showed that such curricula could be
successfully used for transfer learning in multiagent RL do-
mains. However, none of their work explicitly investigates
curriculum design from the perspective of human teachers.
We think it is natural to consider what humans do when de-
signing curricula since it might be easier for them to capture
some examples that are “too easy” (e.g., does not help to im-
prove the current model) or “too hard” (e.g., long training
times are needed before the current model could capture this
example) for the agent to learn. Such an idea has been studied
in the context of teaching humans (i.e., the zone of proximal
development [Vygotsky, 1978]) but not in agent learning.

3 Problem Formulation

In this section, we first define our sequential RL task with
natural language command learning. Then, we introduce a
curriculum design problem for non-expert humans.

3.1 Language Learning with Reinforcement and
Punishment

Our domain is a simplified simulated home environment of
the kind shown in Figure 1. The domain consists of four ob-
ject classes: agent, room, object, and door. The visual repre-
sentation of the agent is a virtual dog, since people are famil-
iar with dogs being trained with reinforcement and punish-
ment. The agent can deterministically move one unit north,
south, east, or west, and pushes objects by moving into them.
The objects are chairs, bags, backpacks, or baskets. Rooms
and objects can be red, yellow, green, blue, and purple. Doors



(shown in white in Figure 1) connect two rooms so that the
agent can move from one room to another. The possible com-
mands given to the agent include moving to a specified col-
ored room (e.g., “move to the red room”) and taking an object
with specified shape and color to a colored room (e.g., “move
the red bag to the yellow room”).

In this sequential domain, the agent needs to learn to re-
spond appropriately to different natural language commands
in a variety of simulated home environments using reinforce-
ment and/or punishment feedback. The learning algorithm
for this study [MacGlashan et al., 2014] connected the IBM
Model 2 (IBM2) language model [Brown et al., 1990] with
a factored generative model of tasks, and the goal-directed
SABL algorithm [Loftin et al., 2015] for learning from feed-
back. In SABL, feedback signals from a trainer are mod-
eled as random variables that depend on the policy the trainer
wants the agent to follow and the last action the agent took
in the previous state. In general, reinforcements under this
model are more likely than punishments when the agent se-
lected an action consistent with the desired policy, and vice
versa for punishment when the action was inconsistent. Us-
ing this model of feedback, SABL computes and follows the
maximum likelihood estimate of the trainer’s target policy
given the history of actions taken and the feedback that the
trainer has provided. We adapted SABL to this goal-directed
setting by assuming that goals are represented by MDP re-
ward functions and that the agent has access to an MDP plan-
ning algorithm that computes the optimal policy for any goal-
based reward function. In contrast to previous work, we fo-
cus on studying how humans perform in designing curricula
rather than in training the agent with reinforcement and pun-
ishment. Therefore, in this study, the human participants only
choose the training curriculum, and the reinforcement and
punishment on each of the curriculum’s tasks is carried out
by an automated trainer, and is observed by participants.

Using this probabilistic trainer model and a curriculum
from a human participant, an iterative training regime over
each task in the curriculum proceeds as follows. First, the
agent receives an English command. From this command, a
distribution over the possible tasks for the current state of the
environment is inferred using Bayesian inference. This task
distribution is used as a prior for the goals in goal-directed
SABL. The agent is then trained with SABL for a series of
time steps, while the explicit reinforcement and/or punish-
ment feedback is given at random times by the automated
trainer. After completing training, a new posterior distribu-
tion over tasks is induced and used to update the language
model via weakly-supervised learning. After the language
model is updated, training begins on the next task and com-
mand from the curriculum.

As the agent learns additional tasks, it becomes better at
“understanding” the language, successfully interpreting and
carrying out novel commands without any reinforcement and
punishment. For example, an agent might learn the interpre-
tation of “red” and “chair” from the command “move the red
chair,” and the interpretation of “blue” and “bag” from the
command “bring me the blue bag,” thereby allowing correct
interpretation of the novel command “bring me the red bag.”

Figure 2: A library of environments provided in a 4 x 4 grid.
They are organized according to the number of rooms and
number of objects. There is a command list for each of the 16
environments.

3.2 Curriculum Design

Here, we introduce a curriculum design problem for non-
expert humans in our sequential RL domain, where the goal
is to design a sequence of source tasks M1, M, ..., M,, for
an agent to train on such that it can complete the given tar-
get task M, quickly with little explicit feedback. Each source
task M, is defined by a training environment, initial state, and
a command to complete in that environment.

To aid our study of how humans form curricula for the
agent to train on, we provided subjects a library of environ-
ments with different levels of complexities shown in the 4 x 4
grid in Figure 2. We organized the space of source environ-
ments a human could choose to include in their curriculum
along two dimensions: the number of rooms and the number
of moveable objects present in the environment. The cross
product of these factors defines the overall complexity of the
learning task, since these factors determine how many pos-
sible tasks the agent could execute in the environment and
therefore how much feedback an agent could require to iden-
tify what the intended task is. For example, the environment
in the top left of Figure 2 has the least complexity, because the
only possible task the agent can complete is going to the yel-
low room. In contrast, the bottom right environment has the
highest complexity, because the agent could be tasked with
going to either the green, red, yellow, or blue rooms; or tak-
ing the bag, chair, or backpack to any of the rooms (excluding
the room in which the object originates). For the ease of de-
scription, we number the environments in the grid from 1 (top
left) to 16 (bottom right), from left to right and top to bottom.

After selecting an environment to include in the curricu-
lum, users select the corresponding command to be taught in
it from a predefined list of possible commands. For exam-
ple, the possible commands for environment 5 (second row
and first column of Figure 2) are “move to the red room,” and
“move the bag to the red room.”

The target task (shown in Figure 1) has the maximum num-
ber of differently colored rooms and shaped objects. In the
user study, it is shown on the right side of the grid to remind
users the goal of the designed curriculum, but it cannot be



selected as part of the curriculum (enforcing a separation be-
tween training and testing).

Note that when we list the possible commands for each en-
vironment, we do not include the command that will be used
in the target task (“move the bag to the yellow room”). That
is, for any environment that contains a bag, the only possi-
ble command is “move the bag to the red/green/blue/purple
room” even when there is a yellow room. We are inter-
ested in studying whether users can figure out that they can
construct a curriculum that includes the command “move to
the yellow room” and the command “move the bag to the
red/green/blue/purple room” to provide the learning agent
enough information to master the target command.

We varied the order of the 16 environments in the grid to
study the effect of the ordering of source tasks on human per-
formance in designing curricula. Specifically, we transposed
the grid, swapping environments 1 and 16, 2 and 12, 3 and 8§,
etc., such that the difficulty level of the environments grad-
ually decreases from left to right, and top to bottom. Partic-
ipants were assigned to one of two experimental conditions
which varied the ordering of source tasks in the grid:

e Gradually Complex Condition: the number of rooms
increases from left to right, and the number of objects
increases from top to bottom (Figure 2).

e Gradually Simple Condition: the number of rooms
gradually decreases from top to bottom, and the number
of objects gradually decreases from left to right.

4 User Study

To study whether non-expert humans (i.e., workers on Ama-
zon Mechanical Turk, known as “Turkers”) can design good
curricula for an RL agent, we developed an empirical study in
which participants were asked to select a sequence of source
tasks for an agent to train on such that it can complete the
target task quickly with little explicit feedback.

In our user study, human participants must first pass a color
blind test before starting the experiment since the training
task requires the ability to identify different colored objects.
Second, participants fill out a background survey indicating
their age, gender, education, history with dog ownership, dog
training experience, and the dog-training techniques they are
familiar with. Third, participants are taken through a tutorial
that 1) walks them through two examples of the dog being
trained to help them understand how the dog learns to com-
plete a novel command successfully using reinforcement and
punishment feedback, and 2) teaches them how to design and
evaluate a curriculum for the dog. Participants are told that 1)
their goal is to design a sequence of source tasks the dog will
train on such that the dog can successfully complete the given
target task quickly, and 2) higher payment would be given to
the Turker if the dog performs well in the target task.

Following the tutorial, participants are requested to select
environments and corresponding commands in any order to
design their own curricula. Recall that the target task is shown
on the right side of the screen to remind participants of the
goal for the designed curricula. Upon finishing designing
a curriculum (containing at least one task), participants can
choose to evaluate their curriculum, watching the automatic

trainer teach the agent the entire curriculum. Then, partici-
pants are required to redesign the curriculum at least once.
We ask participants to explain their strategy for designing the
initial curriculum and what things they identified that the dog
needed to learn in the curriculum to successfully complete the
target task. Participants were also required to explain how
they redesigned the curriculum. Participants had the option
of providing any additional comments about the experiment.

5 Results

This section summarizes the results of our user-study, which
was run on Amazon Mechanical Turk (AMT). We consider
data from 80 unique workers, after excluding 17 responses
which we identified as users who simply pushed through the
AMT task as fast as possible to be paid. We identified such
users as those whose completion time was shorter than 5 min-
utes (the average completion time was 15 minutes 43 seconds,
with a standard deviation of 8.8 minutes) or if both designed
curricula contained only a single task. There were 40 par-
ticipants for each of the experimental conditions (gradually
complex and gradually simple).

5.1 Participant Performance

Recall that participants were told that their goal was to design
a curriculum the dog would train on such that the dog could
successfully complete the novel command “move the bag to
the yellow room” in the target environment (Figure 1) with
little explicit feedback. Therefore, we first examined whether
users could successfully identify the need to communicate
color and object concepts separately in their curriculum in
two experimental conditions. We measured this by analyz-
ing the percentage of users who included both the command
regarding moving to any colored room and the command con-
tained any move-able object. Results in Table 1 (the last row)
show that in the gradually complex condition, 60% of users
captured the idea of teaching the agent both color and object
references separately in their initial curriculum, and this num-
ber increased to 75% in their final curriculum. The gradually
simple condition showed exactly the same results.

Then, we were interested in studying whether users could
figure out to teach the agent two more specific concepts
separately—the yellow room (the room the agent needs to
move to in the target task) and the bag object (the object the
agent needs to move in the target task). We evaluated this by
computing the percentage of users who combined the com-
mand “move to the yellow room” and the command “move
the bag to the red/blue/green/purple room” in their curricu-
lum. Surprisingly, in the gradually complex condition, only
23% of users introduced the yellow room and bag concept
to the agent in their initial curriculum, and 17% more users
captured this idea in their final curriculum. The gradually
simple condition produced similar results. However, there is
still some evidence showing that more users tended to teach
the agent these two specific concepts the agent needed to
learn in the target task. Specifically, in the gradually com-
plex condition, we find that 1) 78% of users tried to train
the agent to move to the yellow room, and 2) a total of 65%
of participants wanted to teach the agent to move an object



Table 1: Summary of percentage of participants for different command selections in two experimental conditions

Gradually Complex Con | Gradually Simple Con
| # | Selected Command Initial Cur | Final Cur | Initial Cur | Final Cur

1 | move to the yellow room 78% 75% 58% 55%

2 | move to the yellow/red/blue/green/purple room 95% 90% 85% 85%

3 | move the bag to the red/blue/green/purple room 35% 55% 43% 63%

4 | move the bag/basket/backpack/chair to ... room 65% 85% 75% 90%

S| #1+#3 23% 40% 20% 33%

6 | #2+#4 60% 75% 60% 75%
(bag/basket/backpack/chair) to some colored room, where ° 168 o 7 211 : ol 2 q o o 1 11 lo . alin . 2 : 0
53.8% of them focused on teaching it to move the bag. alale[1]|alo][2]0 12| [2][2][3]0][a]0

In both the initial and final curricula, a chi-squared test ; 115 : ! n e in 2 5 . J 6 8 Ik ’ 6 4 ;
shows that the number of users who selected each type of oTal 2ol o313 o nninniBriee
commands in Table 1 was not significantly different (p > 3 a 3 9 3 ] 2 5
0.05) between the two experimental conditions, suggesting 0 1f]2|2]j0o|3]]7 |0 0 3|6 |1]||1]2]]a 0
that the ordering of source environments does not affect hu- e fileleflzle el ililellle
man performance in identifying the concepts the agent needs o el i T2l T2l7 To tlollz Tolli T2] 700
to learn to complete the target task. ojo||[oo|[o]o]|o]0 olo||ojo||ofo]|o]0

5.2 Concept Introduction

We hypothesized that users would gradually introduce more
complex environments or commands to the agent in their cur-
riculum. To validate this, we analyzed the changes in the en-
vironment and command complexity. We found that in the
gradually complex condition, only 37.5% (or 45%) of users
consistently increased environment complexity in their initial
(or final) curriculum. However, a total of 50% (or 60%) of
users selected the simple command regarding moving to some
colored room first, and then consistently chose more complex
object-moving commands in their initial (or final) curriculum.
The gradually simple condition showed similar results. This
suggests that users preferred to consistently introduce more
complex commands rather than environments to the agent in
each curriculum. A chi-squared test shows that the number
of users who consistently introduced more complex environ-
ments or commands was not significantly different (p > 0.05)
between two experimental conditions.

There is another interesting finding that users tended to
introduce more complex commands to the agent across dif-
ferent curricula in both experimental conditions. In particu-
lar, in the gradually complex condition, for the 37 users who
kept or increased the curriculum length, 54% of them only re-
placed the command regarding moving to some colored room
with more complex object-moving command, or added new
object-moving commands in the final curriculum. In the grad-
ually simple condition, 62% of the 34 users who kept or in-
creased the curriculum length only introduced more complex
object-moving commands to the agent in their final curricu-
lum. Therefore, as we expected, both within a curriculum and
between curricula, users tended to gradually introduce more
complex commands to the agent rather than more complex
environments.

5.3 Transition Dynamics

Although previous results show that less than half of users
consistently increased the environment complexity in their

(a) Gradually Complex m (b) Gradually Simple

combined

Figure 3: The number of times each of four transitions be-
ing followed for each environment in the initial curricula in
the two experimental conditions. There are 16 corresponding
squares for 16 environments. The blue number represents the
total number of times all four transitions being followed in
each environment.

curriculum, we observed that a considerable number of users
implemented this in segments. It suggests that most users
considered increasing the environment complexity when de-
signing curricula. A better understanding of how users select
more complex environments might give us insights into the
active selection of better curricula.

We hypothesized that different users would choose to in-
crease the environment complexity in different ways, and it
might be affected by the ordering of source environments. In
particular, for the 4 x 4 grid (shown in Figure 2), we de-
fined four different ways for users to increase the environ-
ment complexity: room transition, object transition, com-
bined transition, and others. For a given task M; in a cur-
riculum, a transition to M, is a room transition if and only
if the number of rooms increases between M; and M, ;. If
the number of objects increases, it is an object transition, and
if they both increase it is a combined transition. All other
cases are considered as other transitions. We aim to study
the most popular transition followed by users in two experi-
mental conditions by computing the frequency of each of four
transitions being followed for each environment.

Figure 3 summarizes the number of times each transition
type (room, object, combined, and other) was used from
each environment in the initial curricula in the two experi-
mental conditions. We observe that the room transition was
the most-frequently used in the gradually complex condition,
while the object transition was the most-frequently used in
the gradually simple condition. A chi-squared test shows that
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Figure 4: The probability of each environment being included
in the initial or final curricula in the two experimental condi-
tions. The purple circle represents the overlap of probability.

the differences of the total number of times each transition
type being followed when users design initial curriculum be-
tween two experimental conditions was statistically signifi-
cant (p < 0.01), verifying that the ordering of source en-
vironments does affect the way humans use to increase the
environment complexity.

5.4 Environment Preference

We hypothesized that some source environments in the grid
would be preferred by users when designing their curricula.
Analyzing the properties of these environments might en-
rich the general principles regarding efficient curricula and
inspire the development of new machine learning algorithms
that accommodate human teaching strategies. Therefore, we
explored user preference in each environment by computing
the ratio of the number of users who selected corresponding
environment at least once to the total number of users.

Figure 4 summarizes user preference in each of the 16 en-
vironments when designing an initial or final curricula in two
experimental conditions. A larger dot represents a higher
probability of the corresponding environment being chosen.
We find that when designing initial curriculum, users were
more likely to select 1) Environments 1, 2, 5, and 16 in
the gradually complex condition, and 2) Environments 5, 6,
12, and 16 in the gradually simple condition. This finding
implies that users preferred to choose 1) the simplest envi-
ronments that only contain one important concept (Environ-
ments 1 and 2 are the two simplest ones that refer to a yellow
room, and Environment 5 and 6 are the two simplest ones that
include an object) that the agent needed to learn for the target
task, and 2) more complex environments that are more simi-
lar to the target environment (Environment 12 and 16 are two
of the most similar ones to the target environment).

Compared to the initial curricula, Figure 4 shows that most
environments had a higher probability of being included in
the final curricula in the two experimental conditions, due
to the fact that most users tended to increase the curriculum
length. In particular, Environments 7, 11, and 12, and 3,
10, 12, and 15 gained the most probability in the gradu-
ally complex and gradually simple conditions, respectively.
As discussed before, users tended to focus on teaching the
agent more complex object-moving tasks (building on pre-
vious tasks) when redesigning curricula, and most of these
environments provide a good chance for the agent to learn
object reference with a relatively large number of different
colored rooms.

We also note that users had a lower probability of choosing
the two simplest environments (1 and 2) after varying the or-
der of the 16 environments. Fisher’s exact test shows that the
frequency of each of the 16 environments being selected by
users into initial or final curricula was not significantly dif-
ferent (p > 0.05) between the two experimental conditions,
suggesting that the ordering of source environments does not
influence participants’ preference in choosing environments.
We believe that knowing users prefer 1) isolating complexity,
2) selecting simplest environments they can to introduce one
complexity at a time, 3) choosing environments that are most
similar to the target environment, and 4) introducing com-
plexity building on previous tasks rather than backtracking to
introduce a new type of complexity can be highly useful for
the design of new machine learning algorithms which accom-
modate human teaching strategies.

6 Conclusions and Future Work

In this paper we present an empirical study designed to ex-
plicitly explore how non-expert humans design curricula for
an agent to train on, allowing the agent to complete a target
task with little explicit feedback. Our most important find-
ing is that users followed some salient patterns when select-
ing and sequencing environments in the curricula, which we
plan to leverage in the design RL algorithms in the future.
Our goal will be to develop inductive biases in learning algo-
rithms that can benefit from the types of tasks and transitions
non-expert human teachers use more frequently.

Future work will 1) allow users to create a sequence of
novel source tasks for the agent to train on, 2) come up with
a stable way to show the score of the designed curricula to
motivate users to design better ones, and 3) implement an
RL algorithm that can leverage all interesting salient patterns
followed by non-expert humans to design better curricula.
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