
Towards Behavior-Aware Model Learning from Human-Generated Trajectories
Robert Loftin

North Carolina State University
rtloftin@ncsu.edu

James MacGlashan
Brown University

james macglashan@brown.edu

Bei Peng
Washington State University

bei.peng@wsu.edu

Matthew E. Taylor
Washington State University

taylorm@eecs.wsu.edu

Michael L. Littman
Brown University

mlittman@brown.edu

David L. Roberts
North Carolina State University

robertsd@csc.ncsu.edu

Abstract
Inverse reinforcement learning algorithms recover an un-
known reward function for a Markov decision process, based
on observations of user behaviors that optimize this reward
function. Here we consider the complementary problem of
learning the unknown transition dynamics of an MDP based
on such observations. We describe the behavior-aware mod-
eling (BAM) algorithm, which learns models of transition
dynamics from user generated state-action trajectories. BAM
makes assumptions about how users select their actions that
are similar to those used in inverse reinforcement learning,
and searches for a model that maximizes the probability of
the observed actions. The BAM algorithm is based on policy
gradient algorithms, essentially reversing the roles of the pol-
icy and transition distribution in those algorithms. As a result,
BAM is highly flexible, and can be applied to continuous state
spaces using a wide variety of model representations. In this
preliminary work, we discuss why the model learning prob-
lem is interesting, describe algorithms to solve this problem,
and discuss directions for future work.

Introduction
Inverse reinforcement learning (IRL) can be described as
the problem of learning an unknown reward function of a
Markov decision process based on observations of a behav-
ior that is optimal or nearly optimal under that reward func-
tion (Ng and Russell 2000). In this work, we consider a
complementary problem; identifying the transition dynam-
ics of an MDP based on observations of user behavior, un-
der known reward functions. We show that by making simi-
lar assumptions to IRL about how a user selects actions, we
can learn unknown parameters of a transition model based
on their behavior. Our goal in addressing this problem is to
allow an agent to learn a model of its environment based on
human-generated data, and use that model to choose solu-
tions to tasks we wish the agent to perform.

As an example, we consider the problem of a robot learn-
ing to navigate in a two dimensional environment (e.g., an
office) similar to Ziebart et al. (2009). If we represent this
problem as a Markov decision process, then an unknown
map of the environment corresponds to incomplete knowl-
edge of the transition dynamics of the MDP. Instead of hav-
ing the robot map the environment on its own, we assume

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that the robot is under the control of a human operator who
is performing some task, and not actively helping the robot
build its map. The robot’s sensors may allow it to build a
partial map, but only of areas that it passes through under
user control. The user is likely to avoid obstacles and dead
ends, and so the robot may never observe them.

Without considering why a user avoids certain paths, the
robot’s map may lead it to follow impossible trajectories.
For example, a pair of open doors may suggest that a shorter
path exists between two points than the one followed by the
user, but the fact that the user takes a longer path suggests
that there is a hidden obstacle (e.g., the doors lead to dif-
ferent rooms) that would make a path through those rooms
impossible, or at least longer than the alternative. By com-
bining direct observations of the environment with indirect
knowledge based on user behavior, we can construct a more
complete map than could be learned from direct observa-
tions alone, allowing for more accurate path planning.

We describe the behavior-aware modeling (BAM) algo-
rithm, which learns transition models from user-generated
data. As in Ziebart et al. (2008), BAM computes a maximum
likelihood estimate of the model parameters via gradient as-
cent. To compute the likelihood gradient with respect to the
model parameters, we take an approach similar to policy
gradient methods (Peters and Schaal 2006), but treating the
action distribution as being fixed. While this work is prelim-
inary, it derives a framework for learning transition models
based on user-generated data, and describes model-learning
algorithms for discrete and continuous domains. In addi-
tion, we experimentally validate that the BAM algorithm can
incorporate indirect knowledge, learning transition models
based on synthetic data in a discrete, 2D navigation domain.

Related Work
Inverse reinforcement learning is generally used either to
have an agent learn to perform a task by observing a human
demonstrating that behavior, or to learn a global (task in-
dependent) cost function encoding human preferences over
solutions to different tasks. Abbeel and Ng (2004) look
specifically at replicating a human’s behavior by learning
the reward function the user is optimizing. Ziebart et al.
(2008) learn a global cost function over road networks, al-
lowing for more accurate route planning, while Ziebart et
al. (2009) learn a cost function for predicting the motion of

pedestrians. Similarly, our work focuses on learning a task-
independent model, which can be used to find solutions to
any tasks the agent might be asked to perform.

IRL methods differ in the assumptions they make about
how the actions are selected. Ng and Russell (2000) and
Abbeel and Ng (2004) assume that the observed policy is
optimal under the reward function, while Ramachandran and
Amir (2007) assume that users sample actions from a soft-
max distribution based on their expected return given that
subsequent actions are optimal. Ziebart et al. (2008) use a
less greedy assumption such that the total reward roughly
follows a softmax distribution. We use these same assump-
tions about how user actions are selected to infer the model.

Motivation
The transition dynamics of an environment are often much
more complex than the reward function, and so learning an
accurate transition model may require more data than learn-
ing a reward function. We therefore need to ask what ad-
vantage there is to learning an explicit transition model. In
cases such as 2D mapping where transition dynamics are
only partially known, one could encode the unknown infor-
mation as a global cost function (e.g., assign high cost to
blocked states). The limitation of this approach is apparent
when we want to plan under different reward functions. The
cost function may simply overwhelm the reward function,
leading to undesirable behaviors such as remaining in the
same location instead of passing through a high-cost area to
reach a goal. Ziebart (2010) overcome this problem by im-
posing task-specific constraints on the behavior generated
by the agent, such as requiring that all trajectories end in the
goal state. When such constraints cannot be easily described,
do not exist, or make planning difficult, a global cost func-
tion alone may not be able to capture the way in which each
task-specific reward function affects the choice of policy.

Another potential advantage of learning transition models
is that we generally have more prior information about the
model than we do about the reward function. In IRL, the re-
ward function is treated as being internal to the user, and thus
can only be recovered from the user’s actions. The transition
dynamics, on the other hand, are observable directly from
transition data, without considering the user’s policy. We
may also have additional information, such as sensor data in-
dicating the presence of obstacles. Finally, we note that IRL
generally requires that the transition dynamics are known or
have already been learned. BAM can therefore complement
IRL by improving the quality of the learned model.

Preliminaries
We represent the environment in which the agent operates as
a Markov Decision Process (MDP) defined by {S,A, T}. S
andA are the state and action spaces, while T (s, a, s′) is the
(partially unknown) state transition distribution (or density
for continuous state spaces). A single task is defined by a
reward function R, and we wish to learn an approximation
of T which will allow the agent to select a policy for any
given R. This model is learned from training data D gen-
erated by a user who we assume knows the true transition

dynamics T . Each of the k entries Di ∈ D consists of a
state-action trajectory ζi = {s1, a1 . . . sτi , aτi , sτi+1}, and
a complete reward function Ri and discount factor γi under
which that trajectory was generated. In our experiments, this
reward function takes a value of 1 at the known goal state s?i ,
and 0 everywhere else. We are given a parametric space of
transition models Tθ(s, a, s′), and attempt to maximize the
likelihood of the parameters θ given D, that is

θ? = argmax
θ

p(D|T = Tθ) (1)

The choice of model spaces may encode a significant
amount of domain knowledge. In the case of 2D navigation,
we assume that the dynamics in empty space are known, and
what needs to be learned are the locations of unobserved ob-
stacles. We consider two different assumptions about how
actions are selected by the user. The first is based on the
assumption used in bayesian inverse reinforcement learn-
ing (Ramachandran and Amir 2007). In that work, it is as-
sumed that actions are selected according to

π(s, a) = p(a|s) ∝ eβQ
?(s,a), (2)

where Q?(s, a) is the expected return starting in state s tak-
ing action a, and then following the optimal policy π?. The
alternative assumption, based on the maximum-entropy IRL
approach (Ziebart et al. 2008), is that

π(s, a) ∝ eβQ
≈(s,a), (3)

whereQ≈(s, a) is the solution to the soft Bellman equations,

Q≈(s, a) = R(s) + γ
∑
s′∈S

T (s, a, s′)V ≈(s′) (4)

V ≈(s) =
∑
a∈A

Q≈(s, a)
1

Z(s)
eβQ

≈(s,a). (5)

Where Z(s) is a normalization term for the action distribu-
tion for s. When the transition dynamics are deterministic,
this assumption is equivalent to assuming that state-action
trajectories have a probability proportional to the exponent
of their total reward. Under either of these assumptions,
BAM finds a maximum likelihood estimate of the transition
model parameters via gradient ascent.

Behavior-Aware Modeling
The log-likelihood of θ given trajectory dataD is L(θ;D) =∑k
i=1 L(θ; ζi, Ri, γi). The gradient of L(θ; ζ,R, γ) is

∇θL(θ; ζ,R, γ) =
τ∑
i=1

[β∇θQ(si, ai)

−β∇θV (si) +∇θ lnTθ(si, ai, si+1)] ,

(6)

where Q can be either Q? or Q≈. This gradient combines
the probability of each observed transition with the proba-
bility of each action. Since we assume the user chooses their
actions based on the expected return under the true model,
we have to consider how changes to the model will affect
their choice of actions. For both Q? and Q≈

∇θQ(s, a) = γEs′∼Tθ(s,a,∗)
[
∇θV (s′)

+ V (s′)∇θ lnTθ(s, a, s′)
]
.

(7)

Where actions are assumed to be selected as in Equation 3,
we have Q = Q≈, the gradient of which is

∇θV ≈(s) = Ea∼π≈(s,∗)
[
∇θQ≈(s, a)

+ β∇θQ≈(s, a)
(
Q≈(s, a)− V ≈(s)

)]
,

(8)

with π≈ defined such that the expected return Qπ
≈

follow-
ing π≈ is equal to Q≈, that is π≈(s, a) ∝ exp{βQ≈(s, a)}.
The exact gradient takes into account the fact that the change
in the transition model also leads to a change in the action
distribution π(s, a). Maximum entropy IRL uses the approx-
imation that the action distribution is fixed, in which case

∇θV ≈(s) = Ea∼π≈(s,∗) [∇θQ≈(s, a)] , (9)

which will generally be of smaller magnitude. We use this
approximation in our experiments. Assuming that actions
are selected based on the optimal value function, this fixed-
policy approximation is required, as the policy is not differ-
entiable. Under that assumption, we have

∇θV ?(s) = Ea∼π?(s,∗) [∇θQ?(s, a)] . (10)

For discrete state spaces, we can compute Q and V , using
value iteration, and then compute the gradients via dynamic
programming. The BAM algorithm follows the gradient in
Equation 6, which combines the action probabilities with the
probabilities of the observed transitions.

Continuous State Spaces To extend the BAM approach to
continuous state spaces, we note that the gradient is an ex-
pectation under the state transition and action distributions.
We assume that the user selects actions based on a τ -step
approximation of Q. For a fixed policy π, we have

∇θQπ(s, a)=E

τ−1∑
i=0

∇θ lnTθ(si, ai, si+1)

n∑
j=i

γ
i
R(sj)

 , (11)

where the expectation is over trajectories starting with state
s and action a. The gradient can therefore be estimated by
generating sample trajectories under the current model Tθ.
Generating these samples requires first computing the policy
π, which in the case ofQ = Q? is simply the optimal policy,
which can itself be found via a policy gradient algorithm.

The case where Q = Q≈ is more difficult, but we can
find an approximation of π≈ using a variational form of
policy gradient learning. We define a policy πλ (with pa-
rameters λ) such that πλ(s, a) ∝ exp{qλ(s, a)}, with qλ
satisfying

∑
a∈A πλ(s, a)qλ(s, a) = 0,∀s ∈ S, λ, such that

qλ is an advantage function. We then seek λ which mini-
mizes the KL divergence between the trajectory distributions
p(ζ|Tθ, πλ) and p(ζ|Tθ, π≈). For the second distribution we
can substitute the approximation from Ziebart et al. (2008)
p≈(ζ|Tθ) ∝ exp{R(ζ)}

∏τ−1
i=0 Tθ(si, ai, si+1). The gradi-

ent of the KL divergence is then

∇λDKL(p(ζ|Tθ, πλ)‖p≈(ζ|Tθ)) =
τ∑
i=1

E

[
∇λ lnπλ(si, ai)

(
qλ(si, ai)−

τ∑
j=i

R(sj)

)]
,

(12)

where the expectation is over trajectories drawn from
p(ζ|Tθ, πλ). We can therefore apply BAM to continuous
state spaces under either action selection assumption.

(a) block environment (b) wall environment

Figure 1: Maps of the two grid environments. White squares
indicate obstacles. Red squares are the initial states of the
training trajectories, while green squares are the goal states.

(a) block environment (b) wall environment

Figure 2: Models learned with the BAM algorithm, with
paths planned under these models. The color represents the
probability (from 0 to 1) of an obstacle in each state.

Experiments
To demonstrate how BAM can learn transition models for
unobserved states and actions, we conducted a set of ex-
periments using synthetic trajectory data. We use the two
9x9 grid world environments shown in Figures 1a and 1b in
which certain states are blocked by obstacles. State transi-
tions are deterministic, and the agent can move up, down,
left or right. Actions that would lead to a blocked state sim-
ply maintain the current state. For each start state/goal pair,
we generated 10 optimal state-action trajectories, and used
these to learn a transition model of the environment. In these
environments, there are multiple optimal paths to the goal
states, and so trajectories are generated by selecting ran-
domly from the optimal actions for a state. Because the tra-
jectories are optimal, the training set contains no actions that
would result in a collision, and thus the presence of obstacles
must be inferred from the user’s actions.

We learn a nondeterministic model of the deterministic
transition dynamics. The parametric model assigns a param-
eter θ(s) to each state which gives the probability of that
state being blocked by an obstacle. Under this model, if s′
is the adjacent state given current state s and action a, the
probability of remaining in state s is Tθ(s, a, s) = 1/(1 +
exp{−θ(s′)}). We use a squared penalty term 1

a (θ(s)− b)
2

for each parameter, corresponding to a normal prior θ(s) ∼
N (b, a) for each parameter. We set b = −2 to bias the
model towards the absence of obstacles. In these experi-
ments, BAM assumes that actions are based on the softmax
return Q≈(s, a), as defined in Equation 4.

(a) block environment (b) wall environment

Figure 3: Models learned with the BAM algorithm, but with-
out considering the likelihoods of the observed transitions,
with paths planned under these models. The color represents
the probability (from 0 to 1) of an obstacle in each state.

(a) block environment (b) wall environment

Figure 4: Models learned with maximum likelihood, using
only transitions and not using BAM, with paths planned un-
der these models. The color represents the probability (from
0 to 1) of an obstacle in each state.

Figures 2a and 2b are visualizations of models of each
environment learned with the BAM algorithm, along with
paths planned under those models. They show that most of
the states which are blocked in the true environment have
been given a high probability of being blocked in the learned
model. We note that even though the learned model is not
a perfect reconstruction of the true environment, it captures
enough information about the obstacles to be useful for plan-
ning paths to new goals. Figures 3a and 3b show the models
learned by the BAM algorithm when we remove the com-
ponent of the gradient in Equation 6 that incorporates the
probability of the observed transitions themselves. While the
paths are still correct, we can see higher obstacle probabil-
ities in empty states, demonstrating how these models have
not taken into account the fact that some of the observed
trajectories actually passed through these states.

Simply building a model based on the observed transi-
tions is ineffective in this setting. Figures 4a and 4b show
the models learned by maximizing the likelihood of the ob-
served transitions, without considering the likelihood of the
actions themselves. These learned models do not indicate the
presence of any obstacles because no transitions that collide
with an obstacle are ever observed. These simple examples
therefore illustrate the potential value of the BAM algorithm
in learning from real users. Even when users avoid parts of
the state space, the BAM algorithm can recover information
about the transition dynamics for those states. These results

do suggest some limitations of the BAM algorithm, such as
overfitting, where the model contains non-existent obstacles
which nonetheless help explain the observed behaviors. We
argue however that these problems can be alleviated by a
better choice of model representation, and the use of a more
informative prior distribution over models.

Conclusion
In this work we have described the behavior-aware model-
ing (BAM) algorithm, an approach to the problem of learn-
ing transition models that takes into account the fact that
data is generated by a user attempting to accomplish a spe-
cific task. This preliminary work has demonstrated, in prin-
ciple, that by using assumptions about how users select their
actions BAM can learn about the dynamics of parts of the
state/action space that are never observed in the training
data. We believe that BAM can be applied to a wide variety
of domains in which we need to learn by observing humans
or human-controlled agents. Future work will focus on using
the BAM algorithm to learn models from data generated by
real human users, in more realistic simulated domains and
on robotic platforms. Future work will also examine how
well BAM handles continuous state spaces, and what model
representations are most effective.

Acknowledgments
This work was supported in part by NSF grants IIS1319412
and IIS1643614.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
1. ACM.
Ng, A. Y., and Russell, S. J. 2000. Algorithms for inverse
reinforcement learning. In Proceedings of the Seventeenth
International Conference on Machine Learning, 663–670.
Morgan Kaufmann Publishers Inc.
Peters, J., and Schaal, S. 2006. Policy gradient methods
for robotics. In 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2219–2225. IEEE.
Ramachandran, D., and Amir, E. 2007. Bayesian inverse
reinforcement learning. In in 20th Int. Joint Conf. Artificial
Intelligence.
Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; and Dey, A. K.
2008. Maximum entropy inverse reinforcement learning. In
AAAI, 1433–1438.
Ziebart, B. D.; Ratliff, N.; Gallagher, G.; Mertz, C.; Peter-
son, K.; Bagnell, J. A.; Hebert, M.; Dey, A. K.; and Srini-
vasa, S. 2009. Planning-based prediction for pedestrians.
In 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 3931–3936. IEEE.
Ziebart, B. D. 2010. Modeling purposeful adaptive behav-
ior with the principle of maximum causal entropy. Ph.D.
Dissertation, University of Washington.

