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ABSTRACT
Reinforcement learning is a powerful machine learning
paradigm that allows agents to autonomously learn to max-
imize a scalar reward. However, it often suffers from poor
initial performance and long learning times. This paper dis-
cusses how collecting on-line human feedback, both in real
time and post hoc, can potentially improve the performance
of such learning systems. We use the game Pac-Man to simu-
late a navigation setting and show that workers are able to ac-
curately identify both when a sub-optimal action is executed,
and what action should have been performed instead. Demon-
strating that the crowd is capable of generating this input, and
discussing the types of errors that occur, serves as a critical
first step in designing systems that use this real-time feedback
to improve systems’ learning performance on-the-fly.

INTRODUCTION
Reinforcement learning [7] is a very flexible, robust approach
to solving problems. However, early in the training process
much of the problem space is unexplored, often resulting in
poor performance because reasonable policies are only dis-
covered after a considerable amount of trial-and-error. In
this paper, we propose the idea of using on-demand human
intelligence, available via crowdsourcing platforms such as
Amazon Mechanical Turk, to provide immediate feedback to
reinforcement learning systems based on the intuition and ex-
perience of the human observer.

To test whether crowd workers are able to accurately provide
such advice, we perform a set of experiments that measure the
crowd’s ability to generate just-in-time warnings to an agent
playing Pac-Man. First, we establish that the crowd can col-
lectively identify the correct point at which an error occurs
with over 91% accuracy. Second, we demonstrate that not
only can this mistake identification be done in real time with
a mean latency of just 0.39 seconds, but also that workers are
able to identify what the optimal move would have been been.
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Figure 1: This screenshot shows the web interface of the user
study with game layout, and components of the Pac-Man game:
1) Pac-Man, 2) 4 Ghosts, 3) Pills, and 4) Power Pills.

Third, we compare the crowd’s performance in this real-time
setting with an offline “review” setting where game playback
can be controlled and replayed. In this setting, mistakes can
be better estimated, with a mean distance from the correct
position of just 0.15 seconds.

This work is the first research to establish the crowd’s ability
to react to mistakes made by an intelligent agent in real time,
and provide accurate guidance on a preferred alternative ac-
tion. Our work informs the design of future systems that use
human intelligence to guide untrained systems through the
learning process, without limiting systems to only learn from
their mistakes far after they make them.

The contributions of this paper are to:
• Present the idea that on-line crowds can provide very accu-

rate assistance to learning agents by using real-time data.
• Demonstrate that crowd workers can respond quickly and

accurately enough to provide just-in-time feedback.
• Show that workers can also improve their accuracy in post

hoc review settings for use in future situations.



BACKGROUND AND RELATED WORK
Reinforcement learning has a history of succeeding on dif-
ficult problems with little information. This paper leverages
the on-policy learning algorithm Sarsa [7]. A Sarsa agent
learns to estimate Q-values, representing the estimated total
reward the agent would receive in a state s, execute action a,
and then follows the current policy until the episode is termi-
nated. Over time, this type of temporal difference learning
allows the agent to learn a (near) optimal policy that collects
as much reward as possible, in expectation.

While autonomous methods like Sarsa have many empirical
successes and sound theoretical underpinnings, if a human
is available to provide useful information, the agent is often
able to learn much faster. For example, a user could make
judgements about the agent’s performance by providing hu-
man reward [3, 6] or providing demonstrations. Finally, when
a human can temporarily control the agent to perform the cor-
rect behavior, learning from demonstration techniques [1].

Most related to this paper is existing work done on crowd-
sourcing control and recognition tasks. Human control of
robots has been previously explored in the context of a robot
Ouija board and navigation setting [2]. The Robot Man-
agement System [10] (RMS) also uses on-line contributors
to crowdsource human-robot interaction studies. RMS used
groups of participants working from their home computers to
practice controlling a robot using camera views and a web-
based control interface.

Legion [4] explored using crowd workers to collaboratively
control a robot in real time. This was the first work to show
that on-demand human intelligence could be used to control
a robot when an automatic system is unable to proceed. Le-
gion:AR [5] showed that an active learning approach could be
used in an activity recognition setting to call on crowd sup-
port for an action-labeling task only when needed. In both
systems, low-latency responses were achieved by keeping the
crowd continuously engaged with a task for a period of time.
However, complete crowd control does not let the system ef-
fectively evaluate its own policy. In this work, we explore
if and how we can use real-time crowds in an advisory role,
without needing the crowd to directly control the Pac-Man
avatar, while still maintaining exceptional response speeds.

EXPERIMENTAL DESIGN
Our Pac-Man agent (see Figure 1) used Sarsa to learn a
near-optimal policy to win the game while earning as many
points as possible using an existing open learning implemen-
tation [8]. Due to the large state space, the agent uses seven
high-level features for function approximation to learn a con-
tinuous Q-value function. Pac-Man code is available from
http://www.eecs.wsu.edu/˜taylorm/13PacMan.zip.

To generate the videos used in the user study, we recorded
Pac-Man being controlled by a human who intentionally
made different types of mistakes. Then, we picked 10–14
seconds which contained one (and only one) mistake. Q-
values for the agent’s trajectory were also recorded, confirm-
ing that the human-created mistakes had lower Q-values than
the “correct” action. We create four videos where each con-

tained a mistake: Video 1) moving so that Pac-Man is trapped
by one or more ghosts, Video 2) not moving towards an edible
ghost after eating a power pill, Video 3) taking an empty path
instead of going for pills when they are no risk, and Video 4)
not going for all edible ghosts that are within close range.

To study the hypothesis that crowd workers can provide infor-
mation useful to reinforcement learning agents, we consider
four settings. First, a video of Pac-Man is played only once
(real-time) or the worker can view it multiple times (review).
Second, the worker may be asked to identify the time at which
the mistake is made (Mistake Identification), or asked to iden-
tify both the mistake time as well as suggest the optimal ac-
tion (Action Suggestion).

We want to measure the performance of users in identifying
the point at which a mistake is made and suggesting optimal
action Pac-Man should have executed. To evaluate worker
actions, we can compare to recorded Q-values.

USER STUDIES
Workers were first shown instructions describing the task, as
well as the rules of Pac-Man. During a preliminary test of
the web interface, we found that workers would sometimes
identify mistakes before the sub-optimal action was executed,
anticipating the mistake. We provided explicit instructions
to workers to encourage them to identify the exact time at
which a mistake was made. Workers were then directed to a
tutorial which asked them to complete an example task using
the marking interface. After the tutorial, workers will watch
a new video and must press a button (see Figure 1) as soon as
they observe a mistake.

We recruited crowd workers from Amazon Mechanical Turk
(AMT) for our experiments. While AMT provides immedi-
ately, programmatic access to crowds, it also poses a num-
ber of challenges, including that workers: 1) are unlikely
to be experts, 2) may not take the task seriously and not
read the instructions, and 3) may intentionally select incor-
rect times/actions. Our methods need to be robust to these
challenges, unlike in Learning from Demonstration, where
demonstrations are typically assumed to be optimal.

16 Human Intelligence Tasks (HITs) on AMT encompassed
our four different types of experiments. Each experiment was
tested with 4 different videos. We collected data from 30
unique workers per HIT and every worker was paid 25 cents.

RESULT ANALYSIS
This section presents the results of our study in three parts.
First, we establish that the crowd can identify the mistake
with high accuracy. Second, we demonstrate that not only
can Mistake Identification be done in real-time but that work-
ers can also successfully identify what the optimal “correct”
move would have been. Third, we compare the crowd’s per-
formance in the real-time setting with offline “review” setting
and show that if additional time is available, even more accu-
rate performance can be achieved.

http://www.eecs.wsu.edu/~taylorm/13PacMan.zip


(a) A histogram of workers’ suggestions us-
ing Video 1 (mistake time: 986).

(b) A histogram of workers’ suggestions us-
ing Video 3 (mistake time: 1116).

(c) Number of times each action was sug-
gested by workers (Optimal: 1–down, 2–
down, 3–down, 4–up).

Figure 2: Selected exemplar results from our 16 Amazon Mechanical Turk experiments.

Mistake Identification
Our performance measure is based on how many workers can
correctly identify and suggest a time that is close to the cor-
rect mistake time. Histograms provide a visual representation
of the accuracy of workers in different settings. The mis-
take times are reported as game move numbers, which are
986, 1809, 1116 and 334, for Videos 1–4, respectively. These
video clips are 10 to 14 seconds long, corresponding to 250–
350 total game moves, and the mistakes located roughly three
quarters of the way through the clip. However, because Pac-
Man moves continually, it is difficult for workers to identify
the exact frame when the mistake was executed.

To quantify how accurate the workers were, we calculated the
difference between the actual mistake time and the identified
mistake time, where zero corresponds to a perfect answer. We
selected a threshold of 30 actions, roughly 1 second, so that
any answer within ±1 second will be counted as correctly
identifying the mistake. Figure 2(a) shows the distribution
of workers’ answers where responses within the 956–1016
moves range are considered to be correct, showing only two
errant responses.

To compute the mean difference between the time reported by
a worker and the real error time µdiff , we use: µdiff (AMTk) =∑n

i=1 |twi
−tm|

n , where k is the group number, n is the total
number of workers per group that are within the threshold,
twi

is the ith worker’s suggested time, and tm is the correct
mistake time. The standard deviation is also computed using:

σdiff (AMTk) =

√∑n
i=1(µdiff (AMTk)−|twi

−tm|)2
n , where a low

value indicates suggestions are tightly clustered.

To establish that workers can correctly identify where and
when mistakes occur in our game, we count the number of
people who correctly identified the mistake. Video 1’s review
setting collective percentage of correct events has the highest
over all four videos with 98.3%. This is followed by Videos 4
and 2, with 88.0% and 86.6% respectively. And Video 3 has
the lowest accuracy with 68.4%. This observed high percent-
age of correct events from the three videos suggests that the
crowd can identify a mistake in many cases.

It is also important to point out that there are instances in
which the mistakes are more subtle, making it harder to iden-
tify. Video 3 has the lowest accuracy, and the Mistake Iden-
tification experiment has the least percentage of correct an-
swers at 56.7%. However, the sparsity of the data as shown
in Figure 2(b) suggests that the mistake was harder to find.

In summary, these results established that, in most cases,
workers can identify a mistake in the Pac-Man game with an
overall accuracy for review Mistake Identification at 80% and
an accuracy of 91% for review Action Suggestion.

Optimal Action Identification
Given that workers can correctly identify mistakes, we next
consider whether they can also accurately provide the action
that should have been taken. To do this, we first have to verify
that majority of the workers within the threshold suggested
the same action, and second, the suggested action has the
maximum Q-value in the recorded video’s game state.

Figure 2(c) shows that all workers’ suggested actions that are
within the 30-move threshold, in both the real-time and re-
view cases, meaning that a majority of workers do suggest
similar actions.

Knowing that the crowd reaches consensus on a single action,
we can now compare the crowd’s advice to the recorded Q-
values of the game to verify if it is the correct (near-optimal)
action. The maximum Q-value of the 4 possible Pac-Man
actions determines what action Pac-Man should perform. In
Video 1, a step before 986 moves should suggest the Q-values
for the next move. At move 985, the Q-values are: up =
1729, right = 1621, down = 1768, and left = 1621. In
the human-controlled game in Video 1, Pac-Man went right
at this time when it should have gone down (the maximum
Q-value). And as shown in Figure 2(c), workers did suggest
for Pac-Man should move downward in Video 1. Similar in
the other three videos demonstrate that workers can identify
that a mistake has been made but as well as provide an advice
that is useful and near-optimal.



Real-time vs. Review
We expected the real-time setting to be considerably harder
than review setting. This assumption can be verified by con-
sidering the mean difference for each setting — the average
mean difference for real-time setting is 9.1 moves (≈ 0.36
seconds) while review case is of 4.5 moves (≈ 0.18 seconds).
The lower mean difference in review experiments shows that
if additional time is available, even closer estimates of the
point of the mistake can be gathered.

We performed a 4 × 2 Between Subjects Factorial ANOVA
test of all Action Suggestion experiments shows that the dif-
ference of suggested mistake time by workers between sub-
jects real-time and review setting was statistically significant
(F = 5.10, p < .05, η2 = .023). This difference between
real-time and review setting in all Mistake Identification ex-
periments is also significant (F = 5.02, p < .05, η2 = .022).
This indicates that the different mistakes in each video can
also affect worker’s ability to identify them.

Interestingly, there is only a small difference between the
mean difference of real-time and review setting in Mistake
Identification for Video 2. This indicates that the mistake in
Video 2 was harder for workers to identify than the mistakes
in the other three videos.

It is notable here that the average of mean differences in
the real-time setting for Mistake Identification results to 9.8
moves (≈ 0.39 seconds), and with Action Suggestion at 8.8
moves (≈ 0.35 seconds), which are both very close to the hu-
man response for tasks with no high-level reasoning needed
(e.g., clicking a button in response to a visual stimulus). This
suggests that crowd advice for tasks, such as navigation, can
be collected nearly as fast as people can physically respond.
This quickly-available input can, in turn, be used to improve
real-time learning of virtual and physical agents.

FUTURE WORK
Future work will focus on developing learning algorithms
that to leverage the unique strengths of human input on-the-
fly without being detrimentally affected by incorrect advice.
Although others [9] have incorporated advice from multiple
demonstrators in past work, errors from crowdsourced work-
ers are a unique challenges and opportunities to scale these
systems. Furthermore, we plan to continue to improve our
interfaces to further reduce the latency of worker responses.
One potential method to do this is to leverage workers’ abil-
ity to predict when mistakes might be made, which we ini-
tially observed, to collectively decrease latency below the
best after-the-fact response speed possible. We are also in-
terested in studying how the number of examples during the
tutorial affects participants’ accuracy. Finally, we are inter-
ested in eliciting a confidence measure from workers, poten-
tially allowing us to weight different pieces of advice.

CONCLUSION
Reinforcement learning algorithms often suffer from poor
early-stage performance since agents have to experience con-
siderable amount of trial-and-error before learning an effec-
tive policy. Our approach uses real-time crowds to provide
immediate assistance to the learning agent to help improve its

performance. We ran a set of user studies to show that crowd
workers from Amazon Mechanical Turk can respond quickly
and accurately enough to provide just-in-time feedback to an
agent playing Pac-Man. We show that workers can correctly
identify the point at which a mistake is made by Pac-Man and
the optimal action Pac-Man should have executed. We also
showed that higher performance could be achieved by work-
ers in post hoc review settings.

Our results demonstrated that 1) crowd workers are able to
accurately choose the mistake time in real-time with a mean
latency of just 0.39s, and 2) latency does not increase if work-
ers must also suggest an action. By leveraging the crowd, we
present an effective, scalable means of providing during-task
assistance to learning agents.
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