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Abstract— Using rewards and punishments is a common
and familiar paradigm for humans to train intelligent agents.
Most existing learning algorithms in this paradigm follow a
framework in which human feedback is treated as a numerical
signal to be maximized by the agent. However, treating feedback
as a numeric signal fails to capitalize on implied information
the human trainer conveys with a lack of explicit feedback. For
example, a trainer may withhold reward to signal to the agent
a failure, or they may withhold punishment to signal that the
agent is behaving correctly.

We review our progress to date with Strategy-aware Bayesian
Learning, which is able to learn from experience the ways
trainers use feedback, and can exploit that knowledge to
accelerate learning. Our work covers contextual bandits, goal-
directed sequential decision-making tasks, and natural language
command learning. We present a user study design to identify
how users’ feedback strategies are affected by properties of
the environment and agent competency for natural language
command learning in sequential decision making tasks, which
will inform the development of more adaptive models of human
feedback in the future.

I. INTRODUCTION

We address the development of techniques for teaching
computers using intuitive and natural interactions inspired
by dog training. Conveying a target behavior to a learning
system is not new; efforts focusing on imitation learning
are well documented in the literature [1], [2], [3], [4]. In
this setting, a human trainer demonstrates a desired behavior
to the learner, which copies it, either at the level of in-
dividual actions or in terms of its higher level intentions.
In cases where the target behavior can be recognized but
demonstrations are impossible, reinforcement-learning (RL)
algorithms can be used [5], [6]—the learner seeks a behavior
that maximizes a programmer-constructed reward function.
Both approaches have been used effectively, but are limited.

We hypothesize that algorithms designed with inspiration
from the ways humans train dogs will allow human trainers
to convey target behaviors quickly and intuitively to compu-
tational learners. The novelty of our approach to learning in
this human-delivered feedback paradigm lies in developing
algorithms that decode the trainer’s intent in their selection
of training situations and types of feedback. The learning
techniques discussed in this paper are initial steps towards
algorithms that explicitly model and leverage the ways in
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which humans communicate with learners via a limited set
of discrete feedback signals.

RL methods are most effective in environments where the
numerically-valued reward function contains all the infor-
mation needed to learn the policy. Learning from human
feedback is substantively different. Trainers generally do not
have numerical rewards to give to learners, using only a
small set of discrete feedback signals, and they may give
those signals in a number of different ways to implicitly
communicate the target behavior. Thus, while standard RL
algorithms can be used in this setting, they are not designed
to leverage all of the available information.

Our overarching hypothesis is that models of the
implied communication in training will enable ma-
chines to learn more, from fewer episodes.

Below, we present a Bayesian inference learner that leverages
trainer intent to significantly decrease the number of training
episodes required to learn.

When learning from human trainers and the feedback they
do (or do not) provide, implicatures can become significant.
In dog training, for example, the trainer can reward the dog
by giving a treat, or punish it with a stern “no.” In these
cases, the implicature of the reward and punishment are
straightforward. However, there is a third feedback the trainer
can use: a lack of reward or punishment. If the trainer neither
rewards the dog nor says “no,” it could mean “that is not what
I want, try something else” or “okay, keep going and you will
get rewarded eventually.” If machine-learning algorithms are
to be successful at learning from human-delivered feedback,
they too must be able to decode the implicature of feedback
from human trainers.

There are a number of ways training feedback can be
provided. These so-called operant conditioning paradigms
can be grouped into four categories [7]: positive reward (R+),
negative reward (R-), positive punishment (P+), and negative
punishment (P-). It is important to note that rewards (positive
or negative) should always increase the frequency of the
behavior they are associated with while punishments should
decrease the frequency. In this context, Positive refers to
adding a stimulus and negative refers to removing a stimulus.
An example of R+ is giving a dog a treat (rewarding by
adding a positive stimulus). An example of P- is withholding
a treat (punishing by removing a positive stimulus). Often
times R+ is paired with P- while R- is paired with P+. In
contrast, RL algorithms consider inputs as numerical values;
a reward of zero is treated exactly as any other reward value,
and may increase or decrease the frequency of an action
depending on the current expected reward for that action.



In prior work, we found strong evidence that people (pos-
sibly with only a tacit understanding of their approach) use
these different operant paradigms when training a learning
agent [8], [9]. As in that work, this work focuses on one
aspect of feedback, that is, the use of implicit feedback.
While there are cases where the interpretation of feedback
may be more complex, such interpretations may be highly
user or context dependent, and we do not consider them here.

In this paper, we will present a model for learning from
human-delivered feedback that can be applied in both a
bandit domain and sequential decision-making tasks with
language learning. We will describe human-subject results
for the bandit domain and simulation results for sequential
tasks. Then, we will discuss the result of a human-subjects
experiment to validate the language-learning setting and
determine properties that affect human feedback strategies.

II. RELATED WORK

Our work is part of a growing literature on learning from
human feedback. Thomaz and Breazeal [10] treat human
feedback as a form of guidance for an agent trying an
RL problem. There, human feedback did not change the
optimal policy for the RL problem, but improved exploration
and accelerated learning. Their results show humans give
reward in anticipation of good actions, instead of rewarding
or punishing the agent’s recent actions. Work by Knox et
al. [11] examined how users want to provide feedback,
finding that: 1) there is little difference in a trainer’s feedback
whether they think that the agent can learn or that they are
critiquing a fixed performance; and 2) humans can reduce
the amount of feedback they give over time, and having the
learner make mistakes can encourage more feedback.

COBOT [12] was an online chat agent with the ability
to learn from human agents using RL techniques. It learned
how to promote and make useful discussion in a chat room,
combining explicit and implicit feedback from multiple hu-
man users. The TAMER algorithm [13] has been shown to
be effective for learning from human feedback in a number
of task domains common in RL research. This algorithm
is modeled after standard RL methods that learn a value
function from human-delivered numerical rewards.

Of existing work, [14] is perhaps the most similar to ours.
In that work and in ours, trainer feedback was interpreted
as a discrete communication that depended probabilistically
on the trainer’s target policy, rather than on some numeric
reward. Both our work and theirs use a model of the feedback
distribution to estimate the trainer’s policy.

In addition to the work on learning from feedback, there is
a growing body of work on how humans can teach agents by
providing demonstrations of a sequential decision task [15],
or by selecting a sequence of data in a classification task [16].

A. Contextual Bandit with Human Feedback

In previous work [8], [9], we demonstrated that algorithms
that account for the different strategies employed by users to
train virtual agents can outperform algorithms that ignored
trainer strategy. We have developed two algorithms, SABL

and I-SABL, which are able to infer the behavior desired by
the trainer based on the feedback given, using a probabilistic
model of how trainers provide feedback.

Our probabilistic model assumes that the trainer first
determines if the action taken was consistent with their
target policy λ ∗ (a mapping from observations to actions),
with some probability of error ε . The trainer then decides
whether to give explicit feedback or simply do nothing. If the
trainer interprets the action as correct, then she will give an
explicit reward with probability 1−µ+, and if she interprets
the action as incorrect, will give explicit punishment with
probability 1−µ−. So, if the learner takes a correct action, it
will receive explicit reward with probability (1−ε)(1−µ+),
explicit punishment with probability ε(1 − µ−), and no
feedback with probability (1− ε)µ++ εµ−.

The parameters µ+ and µ− encode the trainer’s strategy,
which we assume to be the same for all states, and constant
throughout a learning session (though we consider the pos-
sibility that the latter assumption is not always true). The
values of these parameters can be specified as part of the
algorithm, or can be learned online for a given trainer. Using
the R+ and P+ notation from behaviorism literature, we
see that µ+=0.1,µ−=0.1 correspond to an R+/P+ strategy
where nearly every action receives explicit feedback, while
µ+ = 0.1,µ−= 0.9 correspond to an R+/P- strategy. What
is important to note about this model is that, depending
on the strategy used, the lack of feedback may be more
probable for correct actions than incorrect actions, or vice
versa. Therefore, the correct inference to make from a lack
of feedback depends on the training strategy being used.

Using this model of feedback, SABL computes the max-
imum likelihood estimate of the trainer’s target policy λ ∗

given the feedback that the user has provided. SABL requires
prior knowledge of the trainer’s strategy. If, however, the
agent knows the correct action for some observations, it can
infer the strategy by looking at the history of feedback for
those observations. We can treat the unknown µ values rep-
resenting the strategy as hidden parameters, and marginalize
over possible strategies to compute the likelihood of a policy
λ . Inferring-SABL, or I-SABL, finds a maximum likelihood
estimate of the target policy, given the training data, that is

argmax
λ

∑
s∈S

p(h1...t |s,λ ∗ = λ )p(s|λ ∗ = λ ),

where S is the set of possible training strategies.

B. Goal-directed Sequential Learning

In the contextual bandit setting, SABL and I-SABL di-
rectly learned the policy to follow for each state from
human feedback. In a large sequential domain, however,
we believe trainers are often more interested in commu-
nicating environment-independent task goals for the agent
to complete. For example, a dog trainer may teach a dog
a newspaper retrieval task in which the goal is for the
dog to get the newspaper and take it back to the trainer.
Once a such a goal is learned, the dog will be able to
carry it out regardless of where the trainer is in a home



environment. Note that this paradigm is analogous to inverse
reinforcement learning [17] where the goal is to derive a
policy from demonstrations indirectly by learning a reward
function that reproduces the observed demonstrations. In
both cases, learning a goal rather than a policy allows the
agent to act correctly even in states where no feedback
(implicit or explicit) has been given. The agent can simply
take the action that is optimal for the known goal.

In previous work [8] we adapted SABL and I-SABL to this
goal-directed setting by assuming that goals are represented
by MDP reward functions and that the agent has access to an
MDP planning algorithm that computes the optimal policy
πg for any goal-based reward function g ∈G. Then, SABL’s
typical formulation of a “correct action” is redefined to be an
action that is consistent with the optimal policy of the true
goal being trained: a ∈ πg∗(s), where a is the action taken
by the agent and πg∗(s) is the set of optimal actions in MDP
state s for the actual goal g∗ ∈ G. An “incorrect action” is
an action that is inconsistent with the optimal policy of the
true goal being trained: a /∈ πg∗(s).

C. Language Learning with Reward and Punishment

Our goal is to enable people to naturally and effectively
train an artificial agent to carry out a variety of different
tasks with reward and punishment. One way to accomplish
this goal would be for a person to manually specify each
new task they are training and when they wanted an agent to
perform a previously trained task, provide an interface that
allowed them to select from the previously trained tasks.
However, a more natural interface would be to connect
the task learning with a natural language model. In this
setting, a trainer could give a novel command and reward
and punish the agent until the agent successfully completed
the task. As the trainer taught additional tasks, the agent
would become better at interpreting the language, thereby
enabling the agent to successfully interpret and carry out
novel commands without any reward and punishment. For
example, an agent might learn the interpretation of “red”
and “chair” from the command “move the red chair,” and the
interpretation of “blue” and “bag” from the command “bring
me the blue bag,” thereby allowing correct interpretation
of the novel command “bring me the red bag.” To enable
language learning from agents trained with reward and
punishment, we developed a probabilistic model [18] that
connected the IBM Model 2 (IBM2) language model [19]
with a factored generative model of tasks, and goal-directed
SABL for learning from human feedback.

Using this probabilistic model, an iterative training regime
proceeds as follows. First, the trainer gives an English com-
mand. From this command, a distribution over the possible
tasks for the current state of the environment is inferred using
Bayesian inference. This task distribution is used as a prior
for the goals in goal-directed SABL. The agent is then trained
with SABL for a series of time steps. After completing
training, a new posterior distribution over tasks is induced
and used to update the IBM2 model via weakly-supervised
learning. The process repeats with a new command.

We previously tested this model using one of the authors
as a trainer in a simplified home environment MDP [18].
Specifically, the environment was a series of colored rooms
connected by doors with different kinds of colored objects
(such as chairs and bags). The agent was trained on seven
commands including “take the blue chair to the yellow room”
and “take the purple bag to the blue room.” As training
proceeded, the agent became better at correctly interpreting
commands and required less feedback to disambiguate the
intended meaning. After training, the agent was able to
correctly interpret novel commands that described different
combinations of objects, object colors, and room colors. For
example, the agent correctly interpreted the command “take
the purple chair to the green room” despite never being
trained with commands involving a purple chair or taking
an object to a green room.

III. TOWARD SEQUENTIAL AND LANGUAGE LEARNING
WITH HUMAN FEEDBACK

The previous section summarized our previous work, the
most relevant results being:
• An agent can learn from human feedback in a contextual

bandit setting.
• Three different sets of human populations successfully

trained in the contextual bandit setting (college students,
dog trainers, and Turkers).

• Human feedback can be treated as categorical, rather
than numerical, in nature.

• One of the authors successfully provided human feed-
back to learn 1) a reward function and 2) a language
model to act in a sequential task.

This section presents our current research directions and
experimental setup.

A. Motivation

Our goal is to show that non-expert humans (i.e., workers
on Amazon’s Mechanical Turk, also known as “Turkers”)
can provide categorical feedback to an agent so that it can
learn a policy appropriate for a given command. In these
experiments, we fix the commands, limiting the human to
providing rewards and punishment feedback. Future work
will allow users to provide feedback and select their own
wording to command goals.

In addition to the question “Can Turkers successfully train
an agent?” we will also investigate three additional questions.
First, we would like to better understand how users want to
train agents in sequential domains. Are users more likely to
use R−/P+? Does this change over time (e.g., will the user
tire of providing rewards and be more likely to use R−/P−)?
Will the user change their strategy if the agent is more (or
less) successful initially?

Second, we are interested in how the properties of the
sequential domain affect the user’s strategy. The two dimen-
sions we consider are step size and step interval, where each
dimension has two settings. The agent could take large or
small steps, and it could take fast or slow steps. An agent
taking large steps at a fast interval would be able to finish



Fig. 1. The GUI used to train the agent with given commands.

the task the fastest (in wall clock time). An agent taking
small steps at a fast interval could finish the task in the
same amount of time as an agent taking large steps at a
slow interval. The fourth combination, an agent taking small
steps at a slow interval, would take the longest amount of
wall clock time. Our hypotheses are that users will 1) provide
more feedback per action when the agent is slower and 2)
be more likely to punish when the agent is slower.

Third, there may be a difference between when people
are “actively” training the agent and “passively” testing its
performance. Our hypothesis is that the amount of human
feedback will decrease over time [20], and that there will be
an even larger decrease in the amount of feedback once the
user believes the agent has learned the task. We will test this
by seeing how the amount of feedback changes over time,
the number of times the agent has performed the task, and
the correctness of the agent’s policy. Depending on these
results, we may need to implement an explicit testing phase
into the experiment where the user observes the agent acting
without being able to provide feedback. If the user accepts
the agent’s behavior, she can continue to the next task. If
not, the user can return to the training phase and provide
additional feedback to the agent.

B. Experimental Setup

To study how humans want to train the agent in sequential
domains, we have developed a user study in which par-
ticipants train a virtual agent to accomplish pre-specified
commands by giving reward and/or punishment. Our domain
is a simplified simulated home environment. The domain and
user study GUI are shown in Figure 1. The domain consists
of four object classes: agent, room, block, and door. The
visual representation of the agent is a virtual dog. It can
deterministically move one unit north, south, east, or west
and move blocks by moving into them. The blocks can be
chairs or bags; rooms and blocks can be red, yellow, green,
blue, and purple. Doors (shown in white) connect two rooms
so that the agent can move from one room to another one.
The possible commands given to the agent include moving to
a specified colored room (e.g., “move to the blue room”) and
taking a block with specified shape and color to a colored
room (e.g., “move the blue chair to the purple room”).

In our user study, users need to pass a color blind test
before starting the experiment since the training task requires

(a) “Move to the yellow
room”

(b) “Move the
blue chair to the
purple room”

(c) “Move the red
bag to the blue
room”

Fig. 2. The three training environments and their corresponding commands.

the ability to identify different colored objects. After passing
the color blind test, users fill out a background survey
indicating their age, gender, education, history with dog
ownership, dog training experiences, and with which dog
training techniques they are familiar. Once completing this
initial survey, users are taken through a tutorial that explains
how to interactively reward and punish the virtual dog based
on its behavior. The user is told that punishment can be
treated as a signal that the dog should consider a different
task than the one it was executing. After the tutorial, but
before beginning a series of training sessions, users are tested
in the same environment as the tutorial to verify that they
understood the interface.

Following the tutorial and verification test, users are re-
quested to train the dog in a series of three environments
shown in Figure 2. Each environment has a different level
of complexity and are presented to users in a random
order. The step size and step interval of the dog for all
three environments is randomly selected from one of the
four conditions discussed previously (small-slow, small-fast,
large-slow, and large-fast).

Following training in the three environments, the users are
asked to repeat training with a new dog in the same three
environments. However, in this second sequence users are
assigned to a different random step size and step interval
condition. Upon finishing the second sequence of tasks, users
are asked to describe the strategy used when training the
agent. Finally, users are asked to provide any additional
comments about the experiment that they have.

IV. RESULT ANALYSIS

The user study was published on Amazon Mechanical
Turk as a set of Human Intelligence Tasks. We consider data
from the 30 unique workers who passed successfully trained
the task after the tutorial, verifying that they understood the
interface. Each participant trained a dog in two sequences of
the three environments. The two sequences were assigned the
same three environments in random order, with two different
training conditions. Each training condition was randomly
picked from one of the four conditions (small-slow, small-
fast, large-slow, and large-fast) with different combinations
of step size and step interval of the agent. There were the
same number of tasks for each of the four training conditions.

A. Can Turkers successfully train an agent?

The results show that the agent could learn the policy
appropriate for the given command in 90% of the tasks.
All 30 non-expert workers could successfully train the agent



TABLE I
TRAINING ACCURACY FOR EACH GIVEN COMMAND

# Command Given Accuracy
1 Move to the yellow room 98.3%
2 Move the blue chair to the purple room 81.7%
3 Move the red bag to the blue room 91.7%

TABLE II
TRAINING ACCURACY FOR EACH TRAINING CONDITION

# Training Condition Accuracy
1 small-fast 77.8%
2 large-fast 91.1%
3 small-slow 91.1%
4 large-slow 93.3%

to accomplish more than half of the tasks. 66.7% of users
were able to teach the agent to successfully execute all 6
commands. The percentage of participants who could train
the dog to learn more than 5 commands was 80%.

Table I shows the performance of Turkers in training the
agent to execute different commands. As we expected, com-
mand 1 achieved the highest accuracy since it was easiest,
as there are no objects in the environment — the agent only
needed to learn the words corresponding to room colors. The
second task actually turned out to be harder than the third
one, even though there was only one block (a blue chair) to
move in the second environment but two blocks (a red bag
and a red chair) in task 3. A one-way ANOVA test shows
that the accuracy differences between these three commands
were statistically significant (p < 0.01), demonstrating that
the task complexity did affect the performance of participants
in training the agent.

Table II shows the effects of training conditions on the
user performance. A one-way ANOVA test shows that the
training accuracy was not significantly different (p = 0.08)
between the four different training conditions. However, what
is interesting to note is that the small-fast setting was the
hardest for the user while other three training conditions were
very similar in performance. Based on our observation that
users tended to give more explicit feedback per action in
this setting, we suggest that this difference reflects difficulty
on the part of the agent in responding to explicit feedback
(especially negative feedback) quickly while taking small
steps with a fast interval. More frequent successive feedback
could confuse the agent while it was planning, making it
harder for the agent to learn the policy. For instance, if two
successive punishments were given to the agent’s current
action, the agent would plan a different action based on the
first punishment, but receive the second punishment before
executing it, which might prevent it from taking the new
action and continue executing the current action.

B. Training Strategies

To better understand how users want to train agents in this
sequential domain, Table III summarizes the distribution of
strategies used for different training commands. To catego-
rize the training strategies, we determined if each executed
action of the agent was consistent with one of the optimal

TABLE III
BREAKDOWN OF STRATEGIES USED IN DIFFERENT TASKS

Command # R+/P+ R+/P- R-/P+ R-/P- Total #
1 1 0 27 57 85
2 2 7 7 104 120
3 2 4 8 88 102

TABLE IV
BREAKDOWN OF STRATEGIES USED IN DIFFERENT SETTINGS

Condition R+/P+ R+/P- R-/P+ R-/P- Total #
small-fast 2 7 16 87 112
large-fast 0 1 3 100 104
small-slow 3 2 16 43 64
large-slow 0 1 11 60 72

policies or not, then we checked if the user gave positive,
negative or implicit feedback when the agent was taking the
correct or incorrect action (e.g., consistant or inconsistent
with an optimal policy). If correct actions received explicit
positive feedback more than half of the time, it would
be classified as R+. If incorrect actions received explicit
negative feedback more than half of the time, it would be
classified as P+. Under an R+/P+ strategy, correct actions
typically received an explicit reward and incorrect actions
typically got explicit punishment. An R-/P- strategy rarely
gave explicit feedback of any type. Unlike our previous dog
training domain where people were more likely to choose
R+/P+ strategies [9], the dominant strategies here were R-
/P-. R-/P+ strategies were still common, and occurred much
more frequently than R+/P- or R+/P+ strategies. This is not
surprising since the dog often behaved correctly without
receiving any explicit feedback in this sequential domain.
The agent’s frequent correct behaviors motivated the user
to ignore good behaviors. In contrast, if the agent acted
incorrectly, users were more likely to provide punishments
to correct the incorrect behavior. Another observation is that
more users used R-/P+ strategies in command 1 compared to
other two commands. We believe that this is due to the very
low frequency of incorrect behaviors in the easier task, which
biased the users towards providing more negative feedback to
incorrect actions. Fisher’s exact test shows that the number of
times each of the four strategies was used was significantly
different (p� 0.01) between different training commands.
The training times for each command also show the level
of complexity of each task (command 1 was easiest while
command 2 was hardest).

We also explore whether the properties of the domain
affect users’ choice of training strategies. The breakdown
of strategies used in different training conditions are shown
in Table IV. Fisher’s exact test shows that the difference
in the frequency of the four strategies used in the different
training conditions was statistically significant (p� 0.01).
We hypothesize that users were more likely to select R-
/P+ strategies so as to provide more punishment in the slow
interval case, as the user might lose patience if the agent was
not able to respond to feedback quickly enough. However, it
is interesting that punishments were used about as frequently
in the slow case as in the small-fast case. We also notice



that workers tended to do much less training (37% less)
when the agent moved slower. One possible explanation was
that the slow interval lead to more user fatigue, as the agent
could take longer to learn the command. However, there is
also some evidence that the slow interval did not affect the
workers’ performance since similar training accuracies were
achieved in both the fast and slow cases.

We observed that the users still provided some rewards
or punishments during the training while using the most
popular strategy R-/P-. Therefore, it is interesting to explore
under what conditions were they more likely to give explicit
feedback. Future work would study whether the user tended
to give more rewards than punishments (or vice versa) if
the agent was in start state (started a new policy), end state
(terminal state or goal state) or a door way.

C. Does the strategy change over time?

We are interested if users’ training strategies changed over
time, and under what conditions were they more likely to
change. One possible factor was the time that the user was
allowed to train the agent. The trainer would be more likely
to change the strategy if she was allowed to train the dog as
long as she liked. However, each Turker was allowed only 30
minutes to accomplish the task. This time was sufficient: the
average time for Turkers to finish the HIT was 12 minutes.

It is possible that the agent’s initial success could lead
the user to “passively” test rather than “actively” train it. A
change might also occur if the user grew tired of providing
explicit feedback. The results show that 26 users changed
their strategies (within the same task or between different
tasks) at least once during the whole training process. Based
on our first hypothesis about strategy change, we only
consider tasks that were trained multiple times, where testing
might take place. Out of 180 tasks, 54 were trained more than
once by 20 users. 13 users changed their training strategies in
21 tasks. 71% of strategy changes were from R+/P- or R-/P+
to R-/P-, which matches our expectation that the user would
tire of providing rewards or punishments and be more likely
to use R-/P-. We also found that out of all the cases where
the strategy switched from R-/P+ to R-/P-, 90% of time
the agent was successfully trained to perform the command
using R-/P+, and then the user changed the strategy to R-/P-
to “passively” test agent’s performance. This supports our
hypothesis that the user tends to change the strategy if the
agent is more successful initially.

Considering all 54 tasks that were trained multiple times
by users, the number of explicit feedback given by the users
decreased over time in 70.4% of the tasks. Our hypothesis
was that there could be a decrease in feedback if the user
believed the agent had learned the task. When evaluating
whether the decreases in the number of explicit feedback
were affected by the initial success of the agent, we found
that 84% of time the agent reached the goal state in one
training session and then the users reduced the number of
feedback in next training session. It The number of human
feedback decreased the most in second task, which was
verified to be the hardest to train in three tasks.

V. LONG-TERM GOALS AND CONCLUSION
We believe our human subjects will find it natural to

train our simulated agent to carry out commands. Designing
environments so that the learner can make sensible pragmatic
implicatures, however, is likely to be more challenging for
people. Future work will attempt to improve the design of
agents to better learn from human feedback. Our long-term
goal is to build trainable agents that can learn from human
intentions to create their own powerful representations. Suc-
cessful representations not only speed up the learning of
sophisticated behaviors, but also form the basis of ever richer
representations.

REFERENCES

[1] B. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469 – 483, 2009.

[2] M. Babes, V. N. Marivate, M. L. Littman, and K. Subramanian,
“Apprenticeship learning about multiple intentions,” in Proc. of ICML,
2011.

[3] J. MacGlashan, M. Babes-Vroman, K. Winner, R. Gao, M. desJardins,
M. Littman, and S. Muresan, “Learning to interpret natural language
instructions,” in Proceedings of AAAI Workshop on Grounding Lan-
guage for Physical Systems, 2012.

[4] T. J. Walsh, K. Subramanian, M. L. Littman, and C. Diuk, “Gener-
alizing apprenticeship learning across hypothesis classes,” in Proc. of
ICML, 2010.

[5] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. The MIT Press, 1998.

[7] B. F. Skinner, Science and Human Behavior. Macmillan, 1953.
[8] R. Loftin, J. MacGlashan, B. Peng, M. E. Taylor, M. L. Littman,

J. Huang, and D. L. Roberts, “A Strategy-Aware Technique for
Learning Behaviors from Discrete Human Feedback,” in Proc. of
AAAI, 2014.

[9] R. Loftin, B. Peng, J. MacGlashan, M. L. Littman, M. E. Taylor,
J. Huang, and D. L. Roberts, “Learning Something from Nothing:
Leveraging Implicit Human Feedback Strategies,” in Proc. of RO-
MAN, 2014.

[10] A. L. Thomaz and C. Breazeal, “Reinforcement learning with human
teachers: Evidence of feedback and guidance with implications for
learning performance,” in Proc. of AAAI, 2006.

[11] W. B. Knox, B. D. Glass, B. C. Love, W. T. Maddox, and P. Stone,
“How humans teach agents - a new experimental perspective,” I. J.
Social Robotics, vol. 4, no. 4, pp. 409–421, 2012.

[12] J. Isbell, C.L., C. Shelton, M. Kearns, S. Singh, and P. Stone, “A social
reinforcement learning agent,” in Proc. of Agents, 2001.

[13] “Interactively shaping agents via human reinforcement: The TAMER
framework,” in Proc. of K-CAP.

[14] S. Griffith, K. Subramanian, J. Scholz, C. Isbell, and A. L. Thomaz,
“Policy shaping: Integrating human feedback with reinforcement learn-
ing,” in Proc. of NIPS, 2013.

[15] M. Cakmak and M. Lopes, “Algorithmic and human teaching of
sequential decision tasks,” in Proc. of AAAI, 2012.

[16] F. Khan, X. J. Zhu, and B. Mutlu, “How do humans teach: On
curriculum learning and teaching dimension,” in Proc. of NIPS, 2011.

[17] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement
learning,” in Proc. of ICML, 2000.

[18] J. MacGlashan, M. Littman, R. Loftin, B. Peng, D. Roberts, and
M. E. Taylor, “Training an agent to ground commands with reward
and punishment,” in Proceedings of the AAAI Machine Learning for
Interactive Systems Workshop, 2014.

[19] P. F. Brown, J. Cocke, S. A. D. Pietra, V. J. D. Pietra, F. Jelinek,
J. D. Lafferty, R. L. Mercer, and P. S. Roossin, “A statistical approach
to machine translation,” Computational Linguist, vol. 16, pp. 79–85,
June 1990.

[20] G. Li, H. Hung, S. Whiteson, and W. B. Knox, “Using informative
behavior to increase engagement in the TAMER framework,” in Proc.
of AAMAS, 2013.


