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Abstract

This paper presents an exploratory study where partici-
pants piloted a commercial UAS (unmanned aerial sys-
tem) through an obstacle course. The goal was to de-
termine how varying the instructions given to partici-
pants affected their performance. Preliminary data sug-
gests future studies to perform, as well as guidelines
for human-robot interaction, and some best practices for
learning from demonstration studies.

Introduction
As robots become increasingly common, it becomes criti-
cal to allow humans to teach robots new skills – the set of
possible skills a robot may need cannot be pre-programmed
at design time and must be conveyed without requiring a
consumer to write code. We are particularly interested in
learning from demonstration (Chernova and Thomaz 2014),
where a robot can learn from a human helping a robot to
perform a task.

The core hypothesis of this work was that different in-
structions to the human participant would change how well
they performed the task. In particular, we asked participants
to fly a robot through an obstacle course. Participants were
divided into two groups: one group would be told that the
robot was an expensive piece of lab equipment and the other
would be told that it was a toy. We expected people to fly
more slowly and make fewer errors if they thought it was
expensive, while those that thought it was a toy would com-
plete the course faster, at the expense of additional errors.
We chose a UAS platform (unmanned aerial system) be-
cause we felt it was believable that a flying robot was ex-
pensive and that it would be easier to recruit participants.

As detailed in the Results Analysis section, we are able to
draw five preliminary conclusions:

• Contrary to our expectation, instructions given to partici-
pants had no effect on their performance in terms of speed
or number of errors.

• Participants who self-reported as less nervous were sig-
nificantly faster than those who self-reported as more ner-
vous.

• Participants below the age of 30 were significantly faster
than those 30 or over.

• Participants who reported playing over 3 hours of video
games per week were significantly faster than those that
did not.

• Contrary to our expectation, although we found factors
correlated with performance as measured by time to com-
pletion, we found no factors correlated with performance
as measured by the number of errors or collisions.

We were also quite surprised that after 90 participants and
multiple collisions and crashes, the single robot used for the
experiments is still able to fly accurately – it is accurate to
say that no robots were harmed (much) during these experi-
ments.

These results suggest future experiments to run to bet-
ter predict the performance of different participants, as well
as design principles for human-robot interfaces to maximize
demonstration ability.

Background and Related Work
Discovering the best mechanism for controlling robots is
of substantial interest to the HRI community, not only for
improved operator training for teleoperatation, but also for
obtaining improved demonstrations and guidance from hu-
man teachers. Learning by demonstration is a powerful
tool, allowing training data to be collected from non-experts
(Thomaz and Breazeal 2006) and used effectively in a vari-
ety of tasks (Chernova and Thomaz 2014). However, with-
out instruction, the information presented by human demon-
strators is often inefficiently chosen and ordered; the qual-
ity of data collected can be improved by providing demon-
strators with clear instructions (Cakmak and Thomaz 2014;
Cakmak and Takayama 2014).

Related work in HCI is sometimes applicable to
robotics (Kadous, Sheh, and Sammut 2006; Fothergill et
al. 2012). There are also parallels that can be drawn with
the study of human instruction, particularly regarding scaf-
folding and ordering of tasks (Van Merriënboer, Kirschner,
and Kester 2003). The role of maintaining and sharing mod-
els of cognitive state between teacher and student has also
been explored in human teaching (Kieras and Bovair 1984),



the study of operator behavior (Boussemart and Cummings
2008), and HRI (Otero et al. 2008; Koenig, Takayama, and
Matarić 2010).

The work most closely related to ours is research on the
role of instructions in dialog (Foster et al. 2009; Fischer
2011; Cakmak and Thomaz 2012; Cakmak and Takayama
2014) and the interrelationship between user demonstration
and type of learning algorithms (Suay, Toris, and Chernova
2012). Some human factors have been found to be corre-
lated to operator performance in UAS design (Mouloua et al.
2001). However, to date, there has otherwise been compara-
tively little work on the role played by the specific elements
of the instructions given to study participants; the best way
to provide instructions to demonstrators is a complex ques-
tion which is only beginning to be seriously explored (Suay,
Toris, and Chernova 2012).

Experimental Design
After participants signed the relevant waivers, each under-
went a brief training session on how to take off, steer, and
land a Parrot AR Drone 2.0. Participants used AR.FreeFlight
2.4, an application developed by the robot manufacturer, on
an iPad. Settings limited the maximum possible horizontal
speed and the vertical speed was set to the minimum level,
allowing the participants to focus on flight in the x-y plane.
After training, the participant had three chances to fly the
UAS through an obstacle course.

Figure 1 depicts the obstacle course participants are asked
to fly. First, the participant takes off from a green square and
flies it to the right side of a soft orange pole. Then, she flies
it through a hula hoop and around the right of the hula hoop.
Finally, the participant must fly around the left of the orange
pole before once again landing in the green square. There
are two blue flexible poles behind the hula hoop to mark
the edge of the course. The participant was told to not pass
or hit the blue poles as well as to try to land as much of
the the unmanned aerial system (UAS) in the green square
as possible. Any questions asked by the participant during
the experiment were answered with pre-agreed answers, de-
signed not to bias the participant. Answers to questions (e.g.,
“How much does the robot cost?”) were deferred until after
the participant completed the experiment.

Participants were split into two groups with different sets
of instructions. One group was told that the UAS was an ex-
pensive piece of research equipment and that they should try
to avoid damaging it, while the other group was instructed
that the UAS was an inexpensive toy robot and we expected
some toys would break during the experiment.1 Both groups
were told to fly through an obstacle course as quickly as pos-
sible without hitting any of the obstacles.

On each flight through the obstacle course, we recorded
the time between takeoff and touchdown and the number of
collisions with the obstacles. Collisions included hitting the
orange pole, hula hoop, blue pole, and any wall. Other noted
errors included the UAS passing the blue pole, if the partic-
ipant landed less than half of the UAS in the green square,

1Both statements are true – the AR Drone is $300 and is used
in the IRL Lab for both research and for classes.
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Figure 1: This diagram depicts the obstacle course par-
ticipants must fly through. The distance from the take-
off/landing square to the end of the course is ˜17 feet and
the distance between the right side of the hula-hoop and the
wall is ˜5 feet.

and if he or she crashed the UAS. A crash is defined as the
participant flying into something hard enough to make the
UAS’s motor power off and fall to the ground, requiring the
flight to begin again from the takeoff area.

Once the participants had flown through the obstacle
course three times, they were asked to take a brief survey
that would help identify features about themselves. Some
key questions in this 13 question survey included:
• What is your age?2

• Do you agree with the following statement: “Flying the
drone made me nervous”?

• How many hours a week do you play video games on av-
erage?

• Have you ever flown a drone/UAS before?
To recruit participants, we used several sources to adver-

tise including fliers, an article about the experiment’s dates
and details on Washington State University’s (WSU) news
website, an in-person table rented at the WSU student cen-
ter, and direct emails to a local engineering company. The
study included a total of 90 participants: 62 men and 28
women. Each participant was randomly assigned to one of
two equal-size groups. After excluding outliers (discussed
more in the following section), the participants included 26
women and 49 men. The average age was 36 years old. Par-
ticipants were compensated by entering into a lottery to win
either $50 (two total) or $25 (four total).

2All participants were 18 or older.



Figure 2: Example video frame captures of participants controlling the ARDrone: crashing into a wall, sub-consciously trying
to steer the robot through leaning the upper body, and a successful landing

Results Analysis
This section presents the results of our user study in four
parts. Participants flew through the obstacle course three
times but our analysis focuses on the second run. The data
from the first trial had a bimodal distribution with a high
number of errors and crashes; this first run-through was seen
primarily as a practice run that allowed the participants to
become more accustomed to the course and robot. By the
third run, the deviations in times were noticeably lower as
all groups converged towards the mean course time. In most
cases, participants improved significantly between the first
and second trials. The first trial was considered too volatile
while the third trial considered too uniform to detect differ-
ences between participants. For these reasons, times from
the second trial were considered to carry the most practi-
cal significance. The first and third flights of every partici-
pant were used to analyze the improvements that participants
made over time (see below). One other source of noise that
we did not control for is how long participants spent trying
to land the robot. Although landing only required the partic-
ipant to maneuver the robot over the landing square and to
press the land button, some participants spent over 30 sec-
onds hovering near the landing square trying to get into the
exact center of the square, before landing.

To improve data interpretability, we assessed normality
and removed outliers. To check normality, Shapiro-Wilk
normality tests were run on the data with a 0.05 significance
level. We concluded that the data distributions are not nor-
mally distributed but rather right skewed. Furthermore, the
normal distribution was an appropriate model for the natu-
ral logarithm of the data. That is, the completion times can
be modeled lognormal.3 After log transformation, the data
was put into a box and whisker plot. Data points that were
1.5 times the interquartile range above/below the third/first

3When analyzing the second trial of all participants, the min-
imum completion time was 14.6 seconds and the average was
31.4 seconds, but the maximum time was 58.1 seconds, showing
a skewed distribution.

quadrant were generally considered outliers. Potential out-
liers that were close to this exclusion criteria were also put
into a histogram, a probability plot, and/or a studentized
deleted residual table to confirm that they were indeed out-
liers. These outlier tests were run on every data set individu-
ally. All hypothesis tests below are based on the transformed
data. Comparisons of the means of the log times are equiva-
lent to comparison of the median (untransformed) times.

Instructions Provided: Expensive vs. Toy

The key hypothesis that motivated this work was that giv-
ing different sets of instructions to participants would elicit
different performances – if participants were told the robot
was expensive, we hypothesized they would take longer to
complete the course. Surprisingly, there was no correlation
between instruction set and performance. The median flight
time of both groups were evaluated using a two-sample t-test
and was shown to not be statistically significant (p = 0.5).
One reason could be that participants had different mind-
sets. Informal observation suggested that some participants
aimed to complete the course as quickly as possible with-
out worrying about damaging the robot, while others who
were uncomfortable with flying the UAS focused more on
not damaging it and worried less about time.4

Another observation was that some participants did not
pay attention to the instructions: they forgot the correct way
to manipulate the interface for flying the UAS after prac-
ticing outside before the test. There was not correlation be-
tween instructions and perceived nervousness in the post-
experiment survey. However, it should be noted that some
participants gave explicit feedback to our instructions with
saying that it was good to know that the UAS was a toy or
they would try to avoid damaging it since it was expensive.

4It is possible that some participants worried about damaging
the robot and the first time they hit something, their unease in-
creased, causing them to hit additional obstacles.
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Table 1: Summary of Statistical Results
Test Condition 1 (# participants) Time (sec.) Condition 2 (# participants) Time (sec.) Stat. Sig.
Instructions Expensive (35) 31.5 Toy (42) 30.7 No
Age < 30 years (27) 24.3 ≥ 30 years (48) 35.1 Yes
Nervousness Nervous (26) 35.9 Calm (43) 28.4 Yes
Video Games < 3 hours/week (57) 33.4 > 3 hours/week (19) 24.3 Yes

Nervous vs. Not Nervous

Question six on the post-experiment survey asked: “Do you
agree with the following statement: ‘Flying the drone made
me nervous.’” and the participants were asked to select
from “strongly agree,” “agree,” “undecided,” “disagree,” and
“strongly disagree.” We hypothesized that if a participant
was nervous, it should affect their performance. As we ex-
pected, the median time of flying the UAS increased sig-
nificantly (7.5 seconds, confirmed by a two-sample t-test
with p < 0.01) between the participants who were not ner-
vous (28.4 ± 2.7 seconds) and those identified as nervous
(35.9 ± 4.0 seconds) during the experiment. We observed
that participants who visually appeared nervous tended to:
1) move the UAS forward a little and then hover it for a long
time, 2) forget the correct way to control the UAS, and 3)
vocalize louder (and more often) when hitting the obstacles.
Furthermore, two-sample t-test shows that the participants
who identified as nervous had a significantly (p < 0.01)
larger average drop in time from the second run to the third
compared to the non-nervous participants. This can be due to
the fact that larger improvements could be made, while the
participants’ reduced nervousness made their performance
more similar to those who were not nervous initially.

People who had previous UAS flight experience were less
likely to be nervous than those who did not. 16.7% of partic-
ipants who had previous experience flying UASs identified
as nervous (the first two responses) while 40.3% of people
with no experience identified as nervous (the final two re-
sponses). A binomial hypothesis test shows that the number
difference between these two groups was statistically signif-
icant (p < 0.05).

We note that the relationship between course completion
time and self-identified nervousness is correlational – future
experiments will test whether performing poorly increases
participants’ nervousness, if nervousness causes poor per-
formance, of if additional factors remain to be identified.

Participant Age

27 participants were below the age of 30 and 48 participants
were at or above the age of 30 (again, after excluding out-
liers). Participants at or over the age of 30 flew 10.8 seconds
slower than the younger population (35.1 ± 3.0 seconds vs.
24.3± 2.3 seconds). A two-sample t-test shows that the me-
dian time difference between these two groups was statis-
tically significant (p � 0.01). Informal observations sug-
gest that older participants were more deliberate in trying to
avoid making mistakes.

Video Game Usage
Participants who played more than three hours of video
games per week flew 9 seconds faster than those who played
three hours or less (24.3 ± 2.6 seconds versus 33.4 ± 2.7
seconds). A two-sample t-test shows that the median time
difference was statistically significant (p � 0.01) between
the two groups. One possible explanation could be that par-
ticipants who played more video games treated the course
as a game rather than a task, achieving higher performance
through more excitement and a relaxed attitude. If true, this
would motivate our future design of more comfortable and
intuitive robot interfaces for helping people provide high
quality demonstrations.

Table 1 summarizes our results. The number of crashes
(i.e., the robot hits something hard enough it stops flying
and must be reset) did not correlate with any other factors,
including nervousness, age, and video game usage. We also
note that, despite a large number of collisions with stationary
objects, we were able to use a single AR Drone for the more
than two hours of total flight.

Discussion and Future Work
While this study was primarily exploratory, one concrete
outcome of this project is a large data set describing 90 par-
ticipants flying a robot, which we will release once we pub-
lish results in a archival venue. This section discusses take-
home messages and future research.

This study focused on self-reported stress. Future work
could look at trying to increase or decrease the level of stress
by having the experimenters make disapproving vocaliza-
tions when the robot crashes, or saying calming phrases
when the participant makes a mistake. We will also attempt
to empirically measure stress (e.g., heart rate or galvanic
skin response) to see if such measures correlate with per-
formance. If they do, the robot could adjust its performance
automatically, such as slowing down the maximum speed
when the user is very nervous. Similarly, in non-training set-
tings where a human and robot are collaborating on a shared
task, the robot may wish to change its behavior depending
on the user’s stress level (e.g., move slower, take over more
of the shared task, or become more autonomous).

In addition to focusing on “errors” made during flight, fu-
ture work will use a motion tracking system to accurately
record demonstrations. This data can then be used by mul-
tiple learning from demonstration algorithms in order to de-
termine which users’ demonstrations are most useful and
what factors can influence the demonstration quality.

Future questions to investigate include:

• How predictable are the results? Can we use measured or



self-reported variables to predict the quality of a future
robot demonstration from a user?

• Will increased practice time reduce stress and improve
demonstrated performance? If so, can we predict how
much practice a user should have with a platform before
data is used for demonstration learning?

• If participants practice on a virtual robot using a realis-
tic simulation, what will the impact be on user stress and
demonstration quality when the user transitions to a phys-
ical platform?

• How does the design of the robot or interface change a
user’s stress level, and does this impact demonstration
quality?
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