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Abstract For real-world applications, virtual agents must be able to learn new be-
haviors from non-technical users. Positive and negative feedback are an intuitive way
to train new behaviors, and existing work has presented algorithms for learning from
such feedback. That work, however, treats feedback as numeric reward to be maxi-
mized, and assumes that all trainers provide feedback in the same way. In this work,
we show that users can provide feedback in many different ways, which we describe
as “training strategies.” Specifically, users may not always give explicit feedback in
response to an action, and may be more likely to provide explicit reward than explicit
punishment, or vice versa, such that the lack of feedback itself conveys informa-
tion about the behavior. We present a probabilistic model of trainer feedback that
describes how a trainer chooses to provide explicit reward and/or explicit punish-
ment and, based on this model, develop two novel learning algorithms (SABL and
I-SABL) which take trainer strategy into account, and can therefore learn from cases
where no feedback is provided. Through online user studies we demonstrate that these
algorithms can learn with less feedback than algorithms based on a numerical inter-
pretation of feedback. Furthermore, we conduct an empirical analysis of the training
strategies employed by users, and of factors that can affect their choice of strategy.
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1 Introduction

Within the field of artificial intelligence there exists a significant body of work on
the problem of designing agents to learn behaviors from human trainers [5, 14, 27],
and specifically on the problem of learning from trainer-provided feedback [8, 17].
In many cases [12, 17] feedback is treated as being representative of some numeric
reward or value function associated with the underlying task. Under such an interpre-
tation, the agent seeks to maximize the expected value of the feedback it receives for
its actions.

In this work, however, we argue that trainer feedback is a more complicated form
of discrete communication between the trainer and the learner. Simply treating feed-
back as a numeric reward signal (i.e., reward has a positive value, punishment has a
negative value, and the goal is to maximize the average return), will in many cases
lose information about the target behavior present in the trainer’s feedback. There
are of course many possible approaches to training via positive and negative feed-
back, which we will describe as training strategies throughout this work. The trainer’s
choice of strategy may depend on the nature of the training task, on the nature of the
learning agent, and on the trainer’s own background. The trainer may even change
strategies in response to the agent’s behavior.

In this work, we are specifically interested in how the trainer’s strategy affects the
use of the lack of feedback as a form of implicit feedback, and how such feedback
should be interpreted. As a motivational example of this phenomenon, consider a
common approach to dog training, where trainers will provide a large amount of
explicit reward in the form of treats and conditioned rewards (i.e., clicker training),
but very little explicit punishment. When such an approach is taken to providing
feedback, the lack of explicit reward (i.e., withholding a treat from a dog) can itself
be interpreted as a form of punishment, indicating that the dog’s previous actions
were incorrect. If, however, the reverse strategy was followed, and the trainer only
provided explicit punishment, then the lack of feedback would indicate that the dog’s
actions were in fact correct. This work will focus on the rates at which trainers give
explicit and implicit feedback for correct and incorrect actions. If the learning agent
knows that implicit feedback is more likely for correct or for incorrect actions, it can
use that information to make inferences about the correctness of an action, even when
no explicit feedback has been given for that action.

Our work in this area has resulted in two main contributions with respect to un-
derstanding trainer strategies that we present in this paper:

1. We characterize, based on empirical data collected from real users, the types of
strategies followed in practice by human trainers when teaching virtual agents,
and look at potential factors that could affect those users’ choices of strategy.

2. We present a probabilistic model which captures certain aspects of trainer strat-
egy, and uses that model to derive two algorithms, SABL and I-SABL, which
explicitly consider trainer strategy, and can therefore learn about the target be-
havior even from cases where no explicit feedback is given.
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We demonstrate that these algorithms can be effective both with human and simulated
trainers. Experiments show that agents using these algorithms can not only benefit
from knowing the trainer’s strategy, but can infer that strategy online during training.

2 Background and Related Work

This work is part of a growing literature on the problem of designing algorithms
which can learn behaviors from human feedback. Our work is also motivated by
work in psychology on how animals and humans learn from positive and negative
feedback, specifically, the concept of behaviorism [23]. Based on the insights gained
from that work, we develop an approach to learning from feedback which does not
interpret feedback as numeric reward as most existing work does, but instead as a
form of discrete communication from the trainer. Here we will discuss the existing
work in machine learning as well as provide some background on the psychological
underpinnings of our work.

2.1 Machine Learning from Human Feedback

There exists a large body of work on the problem of learning from human train-
ers, and specifically on learning from trainer feedback. Some approaches [27] have
treated human feedback as a form of guidance for an agent trying to solve a rein-
forcement learning (RL) [25] problem. In that work, human feedback did not change
the numeric reward from the underlying RL problem, or the optimal policy, but im-
proved exploration and accelerated learning. Their results show humans give reward
in anticipation of good actions, instead of rewarding or punishing the agent’s recent
actions.

COBOT [11] was an online chat agent with the ability to learn from human agents
using RL techniques. It learned how to promote and make useful discussion in a
chat room, combining explicit and implicit feedback from multiple human users.
The TAMER algorithm [17] has been shown to be effective for learning from hu-
man feedback in a number of task domains common in the RL research community.
This algorithm is modeled after standard RL methods which learn a value function
from human-delivered numeric rewards. At each time step the algorithm updates its
estimate of the reward function for a state-action pair using cumulative reward.

Similar to this work, other studies [16] have examined how users want to provide
feedback, finding that: 1) there is little difference in a trainer’s feedback whether they
think that the agent can learn or that they are critiquing a fixed performance; and
2) humans can reduce the amount of feedback they give over time, and having the
learner make mistakes can increase the rate of feedback. Our work differs because
we focus on leveraging how humans naturally provide feedback when teaching, not
how to manipulate that feedback.

Of existing work however, Policy Shaping [8] is most similar to the algorithms
presented in this paper. In that work, and in ours, trainer feedback was interpreted
as a discrete communication that depended probabilistically on the trainer’s target
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policy, rather than the traditional approach of treating feedback as numeric reward.
Both our work and Policy Shaping uses a model of the feedback distribution to es-
timate a posterior distribution over the trainer’s policy. In contrast to that work, ours
focuses on handling different trainer feedback strategies, whereas Policy Shaping as-
sumes actions which do not receive explicit trainer feedback are uninformative as to
the trainer’s policy (though still informative about the underlying MDP). The algo-
rithms presented in this work, however, use knowledge of the trainer’s strategy to
extract policy information from actions that without explicit feedback. Further, our
algorithms can infer this strategy from experience, and so can adapt to a particular
trainer’s strategy.

Other forms of feedback types besides simple punishment and reward have also
been explored, including feedback strategies employed by film directors, golf instruc-
tors, and 911 operators [9]. These experts gave rich feedback and direction in the form
of explaining consequences, querying learner understanding, using assistive aids, etc.
Other work has considered how users might assist learning algorithms by selecting a
sequence of data in a classification task [14].

In addition to the work on learning from feedback, there is a growing body of
work that examines how humans can teach agents by providing demonstrations of
a desired behavior [3]. Learning from demonstration has been applied effectively
to problems of robot control problems, such as robot navigation [6]. Other work
has leaned motion control policies that can mimic motions demonstrated by human
trainer’s [4]. In all of these cases, similar to learning from feedback, much of the
challenge for the learning agent comes from the limited, sometimes incomplete in-
formation provided by the trainer.

Interestingly, some work has been done comparing the effectiveness of learning
from demonstration against that of learning from feedback [18]. That work, however,
suggested that the relative performance of the two approaches was task dependent. In
addition, we note that in many cases it may not be possible for the trainers to actually
demonstrate the desired behavior. Unlike most work in learning from demonstration,
where the intended meaning of a trainer’s demonstration is clear, in our work the
meaning of the trainer’s feedback can initially be ambiguous, and errors in feedback,
unlike erroneous demonstrations, must be corrected as part of the learning process.

One approach to learning from demonstration is the use of algorithms for in-
verse reinforcement learning [1,5], where the learner attempts to identify the reward
function of a Markov decision process that is consistent with a users demonstrated
actions, and identify a full policy that is optimal under that reward function. A num-
ber of different algorithms for inverse reinforcement learning (IRL) have been pro-
posed, including maximum entropy IRL [28], which searches for a reward function
that leads to a similar distribution over state trajectories as is observed in the training
data. Another, similar approach is Bayesian IRL [22], which is of particular interest
because it draws samples of the trainer’s reward function from a posterior distribution
over reward functions that is conditioned on observations of the trainer’s policy. As
our work assumes that the trainer’s feedback depends probabilistically on the their
desired policy, the same approach allows for sampling of reward functions from a
distribution conditioned on feedback instead of observed actions.
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We suggest that it may be possible to combine the algorithms described in this
work with existing techniques for learning from demonstration, to allow an agent
to learn from both feedback and demonstration simultaneously. In Section 8 we de-
scribe an algorithm for maximum likelihood inverse reinforcement learning, and show
that it can be combined with our framework for learning from feedback, allowing our
framework to be applied to sequential domains. We suggest that maximum likelihood
IRL could also be used for learning from demonstration, making it possible to com-
pute maximum likelihood estimates of trainer reward functions and policies given
data including both feedback and demonstrations. In this work, however, we do not
implement such an algorithm.

Existing work has shown that feedback can be combined with user demonstra-
tions, for example, by using feedback to weight the value of different user demon-
strations used to estimate the correct policy [2]. Other work has also shown that feed-
back can be combined with reward from some underlying Markov decision process,
or some predefined shaping reward [12, 13]. It should be noted that in both of these
examples, feedback was not given interactively, during the performance of a behav-
ior, but was given as a critique to portions of an agent’s performance that could be
selected by the user after the agent had finished performing the behavior. Our work
focuses on dealing with feedback given in real time, where the distinction between
cases where the user is actively teaching the agent, and where the trainer is passively
observing the agents behavior is not always clear.

2.2 Behaviorism

The notion that trainers may follow different strategies while teaching is motivated
by work on behaviorism and techniques for animal training using punishment and
reward. Behaviorism, a field of psychology, considers how animals and humans learn
form positive and negative feedback. Skinner introduced operant conditioning, a con-
cept of providing feedback to modify the frequency of voluntary behaviors [23].
There are a number of ways in which punishment and reward can be combined to
teach a behavior. These so-called operant conditioning paradigms can be grouped
into four categories [24]: positive reward (R+), negative reward (R−), positive pun-
ishment (P+), and negative punishment (P−). Here, reward refers to any stimulus that
would increase the frequency of an associated behavior, while punishment would be
a stimulus that decreases the frequency of a behavior. Positive refers to adding a stim-
ulus and negative refers to removing a stimulus. An example of R+ would be the act
of giving a dog a treat (reward by adding a desirable stimulus). An example of P−
would be the removal of a prized toy (punishment by removing a desirable stimulus).
Thus, both positive and negative reward encourage an associated behavior, while both
positive and negative punishment discourage an associated behavior.

Dog trainers have learned that using only positive reward (R+) to encourage de-
sired behaviors results in fewer unintended side effects for dogs than when positive
punishment (P+) is used to reduce undesired behavior [10]. We hypothesize that, in
many cases, users will tend to apply this concept when training virtual agents (even
if they don’t realize they are doing it). We will show how in situations where users
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do have a bias towards R+/P− operant conditioning paradigms, learning algorithms
that take these strategies into account have a significant advantage when learning
from human trainers.

3 Motivations: Behaviorism and Trainer Strategies

The goal of this work is to characterize the different strategies followed by human
trainers when teaching virtual agents, and to build learning algorithms that take those
strategies into account. As part of this work, we develop a probabilistic model of how
feedback is provided under different strategies, and use this model both to classify
strategies seen in practice, and to build probabilistic inference algorithms to learn
behaviors from such feedback.

3.1 Trainer Strategies

In this work, we use an idealized model of the training process, in which the learning
agent takes a single action, and then may receive positive or negative feedback from
the trainer. We hypothesize that different trainers can differ in how they provide feed-
back, even when teaching the same behavior. For example, when the learner takes a
correct action, one trainer might provide an explicit positive feedback while, another
might provide no response at all.

We classify a trainer’s strategy by the cases in which they give explicit feedback.
Under a balanced feedback strategy a trainer typically gives explicit reward for cor-
rect actions and explicit punishment for incorrect ones. A reward-focused strategy
typically provides an explicit reward for correct actions and no response for incorrect
actions, while a punishment-focused strategy typically provides no response for cor-
rect actions and explicit punishment for incorrect ones. An inactive strategy rarely
gives explicit feedback of any type (making it impractical). Under a reward-focused
strategy, the lack of feedback can be interpreted as an implicit negative feedback,
while under a punishment-focused strategy, it can be interpreted as implicitly pos-
itive. To a strategy-aware learner, the lack of feedback can be as informative as
explicit feedback.

These strategies roughly correspond to the operant conditioning paradigms de-
scribed in the behaviorism literature. A balanced feedback strategy would correspond
to a R+/P+ paradigm, where both explicit punishment and explicit reward are used.
A reward-focused strategy would roughly correspond to a R+/P− paradigm, while
a punishment-focused strategy would correspond to a R−/P+ paradigm. An inactive
strategy would correspond to a R−/P− paradigm.

We conducted three online users studies as part of this work, in which each par-
ticipant went through one or more training sessions where they attempted to teach
a virtual agent to perform a simple behavior. Table 1 shows the number of training
sessions, from the first two of these studies, in which each of these four types of
strategies was used. A user was classified as balanced if she gave explicit feedback
for correct and incorrect actions more than half of the time, while inactive means she
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Table 1: Breakdown of strategies observed in the online user studies

Strategy Number of Training Sessions Exhibiting Strategy
balanced feedback 93

reward-focused 125
punishment-focused 6

inactive 3

gave explicit feedback less than half the time in both cases. Reward-focused means
correct actions received explicit feedback more than half the time and incorrect ac-
tions received it less than half the time; punishment-focused is the opposite case.
Note that all four types were employed, but that a large percentage of users followed
a reward-focused strategy. We provide this sample of results here to help emphasize
the point that human trainers do follow a variety of feedback strategies. We will in-
clude a more detailed discussion of strategies in Section 6.

3.2 Probabilistic Model of Trainer Strategy

One of the main contributions of this work is a formal, probabilistic model of trainer
feedback. We will use this model both to characterize the strategies followed by users
in the studies we conduct, and more significantly, to build learning algorithms which
use probabilistic inference to identify target behaviors, while taking into account the
trainer’s strategy.

This probabilistic model of human feedback encapsulates differences in trainers’
categorical feedback strategies. We model the learning problem as a set of discrete
observations of the environment and a set of discrete actions that can be taken. The
behavior being trained is represented as a policy, that is, a mapping from observations
to actions, which in this work we will denote with λ.

Under our model, training is divided in to discrete episodes, in which the agent
observes the state of the world, takes an action and may or may not receive some
feedback from the trainer. Our model assumes that the trainer first determines if the
action taken was consistent with some target policy λ∗ for the current observation,
with some probability of error ε. The trainer then decides whether to give explicit
feedback or simply do nothing. If the trainer interprets the learner’s action as correct,
then she will give an explicit reward with probability 1−µ+, and if she interprets the
action as incorrect, will give explicit punishment with probability 1−µ−.1 Therefore,
when accounting for error in the trainer’s interpretation, if the learner takes a correct
action it will receive explicit reward with probability (1 − ε)(1 − µ+), explicit pun-
ishment with probability ε(1 − µ−), and will receive no feedback with probability
(1− ε)µ+ + εµ−.

The parameters µ+ ∈ [0, 1] and µ− ∈ [0, 1] represent the trainer’s preference for
giving neutral feedback for correct and incorrect actions, respectively, and encode the
trainer’s feedback strategy. For example, µ+=0.1, µ−=0.1 correspond to a balanced

1 Note that for the µ parameters, + and − distinguish reward and punishment, and not explicit/implicit
feedback as in the R+/P+ notation taken from the behaviorism literature.
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feedback strategy where nearly every action receives explicit feedback, while µ+ =
0.1, µ−=0.9 correspond to a reward-focused strategy, where only actions interpreted
as correct tend to receive explicit feedback. Putting these elements together, for time
step t (each time step corresponds to an episode with the agent observing the world,
choosing an action and receiving feedback), we have a distribution over the feedback
ft conditioned on the observation ot, action at, and the trainer’s target policy λ∗,

p(ft = f+|ot, at, λ∗) =
{
(1− ε)(1− µ+), λ∗(ot) = at
ε(1− µ+), λ∗(ot) 6= at,

(1)

p(ft = f−|ot, at, λ∗) =
{

ε(1− µ−), λ∗(ot) = at
(1− ε)(1− µ−), λ∗(ot) 6= at,

(2)

p(ft = f0|ot, at, λ∗) =
{
(1− ε)µ+ + εµ−, λ∗(ot) = at
εµ+ + (1− ε)µ−, λ∗(ot) 6= at.

(3)

where f+ is an explicit positive feedback, f− is an explicit negative feedback, and
f0 represents a lack of feedback.

What is important to note about this model is that, depending on the strategy
(and the corresponding µ+ and µ− parameters) used, the lack of feedback may be
more probable for correct actions than incorrect actions, or vice versa. Therefore, the
correct inference to make from a lack of feedback depends on the training strategy
being used. This model formalizes the idea that learning depends on the training
strategy being employed.

3.3 Numeric Reward vs. Discrete Feedback

We can compare the discrete, probabilistic interpretation of trainer feedback used in
this work against the numerical reward interpretation used in much of the existing
literature. Under the numeric interpretation, each action receives a continuously val-
ued reward signal, and the agent attempts to find the action which maximizes the
average reward received. We argue (and our experimental results support) that trainer
feedback can be interpreted more effectively as a form of discrete communication
between the trainer and the learner, allowing the agent to learn the desired behavior
in less time and with less effort on the part of the trainer.

There are some interpretations of trainer feedback that are more easily repre-
sented under a numerical interpretation, and that are not modeled by our probabilistic
interpretation. Specifically, our model does not consider the magnitude of the feed-
back provided for an action, either the magnitude of an individual feedback signal, or
the number of feedback signals given in response to a single action. Under a numer-
ical interpretation, an individual feedback signal can be assigned different numerical
values (e.g., the verbal response “good” being given a smaller value than “Great!”).
Under such an interpretation, a single action can also receive multiple feedback sig-
nals, with the total value of these signals being assigned to an action. Therefore, it is
possible under a numerical interpretation of feedback for two actions to each receive
positive feedback, but one action to have a greater estimated value than the other, and
so be assumed to be preferable to the other.
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Under our model, however, we do not directly consider the relative utility of one
action versus another. One action is not considered to be more “correct” than another,
but is instead considered more likely to be the correct action. It would be possible
to interpret the magnitude of feedback under our model, with the magnitude of feed-
back could representing the certainty on the part of the trainer that the action was
correct. That is to say, that the trainer is less likely to erroneously give a feedback
signal of large magnitude than one of small magnitude. Therefore, when comparing
two actions that have each received one feedback signal, the action that had received
the larger magnitude signal would be considered more likely to be correct. Similarly,
when more than one feedback signal is given in response to an action, we would
assume that if the action were not correct then the trainer would have to repeatedly
given erroneous feedback signals to get such a response. As making multiple incor-
rect feedback signals is far less likely than making a single incorrect feedback, this
would mean that an action receiving multiple positive feedback signals is more likely
to be correct than one that has received only a single positive feedback.

It is not clear, however, that the magnitude of users feedback actually reflects the
relative utility of the action for which that feedback is given. Similarly, the number
of individual feedback signals may not directly relate to the users preference for one
action over another. There may be many possible interpretations for feedback of dif-
fering magnitude and frequency, some of which may not convey much information
about the correctness of an action. For example, differences in the number or magni-
tude of feedback signals may be the result of frustration on the part of the trainer, or
some global measure of the agents performance.

In the user studies presented in this work, we explicitly choose to consider nei-
ther the magnitude of a feedback signal (we only allow for one level of positive and
negative feedback), nor the number of feedback signals given for a single action (our
learning algorithms only consider the final feedback given in response to an action).
This interpretation gives trainers the opportunity to correct a mistaken feedback im-
mediately after giving it. Additionally, mistakes early in the training process are easier
to overcome, as the trainer does not need to provide a large amount of feedback to
outweigh the previous, incorrect feedback. As this work will demonstrate, learning
algorithms which treat feedback as something other than a numeric reward signal,
and which explicitly consider multiple possible interpretations of feedback, can be
much better suited to learning from human trainers.

4 Strategy-Aware Bayesian Learning

In this work, we develop algorithms for learning from feedback that accounts for
differences in trainer strategy. Specifically, we take advantage of the fact that, under
reward-focused and punishment-focused training strategies, the lack of any feedback
can convey as much information about the target behavior as explicit feedback. We
will demonstrate experimentally that this approach allows agents to learn behaviors
in less time, and with fewer feedbacks, when compared to approaches that ignore
trainer strategy.
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Algorithm 1 The SABL algorithm. The feedback distribution p(ft|ot, at, λ∗(ot) =
a′) is described by Equations 1, 2 and 3. takeAction(at) does not return until the
episode finishes.
∀o ∈ O, a ∈ A : P [o, a]← 1

|A|
t← 0
while user has not terminated learning do

ot ← observeWorld()
at ← argmaxa′∈A P [ot, a

′]
takeAction(at)
ft ← receiveFeedback()
for all a′ ∈ A do

P [ot, a
′]← p(ft|ot, at, λ∗(ot) = a′)P [ot, a

′]
end for
P [ot, · · · ]← normalize(P [ot, · · · ])
t← t+ 1

end while

4.1 The SABL algorithm

Here we present the Strategy-Aware Bayesian Learning (SABL) algorithm. The SABL
algorithm assumes that trainer feedback is provided according to the probabilistic
model presented previously. Using this model of feedback, SABL computes a maxi-
mum likelihood estimate of the trainer’s target policy λ∗ given the feedback that the
user has provided; that is, it computes

argmax
λ

p(h1...t|λ∗ = λ),

where ht is the training history of actions, observations, and feedback. If a user pro-
vides multiple feedbacks during an episode, SABL only considers the most recent,
allowing a user to correct a mistaken feedback. Algorithm 1 is an outline of SABL.
Note that only the current likelihood distribution is needed to compute the likelihood
given a new episode, and therefore the full training history does not need to be con-
sidered when updating the policy probabilities.

SABL requires that we specify the trainer’s strategy before learning, but in prac-
tice we are unlikely to know what that strategy will be, as trainers may use a variety
of strategies. Specifying an incorrect strategy can severely degrade the performance
of the algorithm. For example, if the trainer follows a reward-focused strategy, while
the agent assumes that they follow a punishment-focused strategy, then the agent will
interpret the lack of feedback as indicating that the previous action was correct, when
in reality the lack of feedback means the previous action was incorrect.

Specifying that the trainer’s strategy is balanced, that is, µ+ = µ−, will cause
the agent to ignore episodes where no feedback is given, and while it will prevent the
agent from harmfully misinterpreting the lack of feedback, it will also prevent it from
gaining any knowledge from such episodes. In the next section we will extend SABL
to allow it to infer the trainer’s strategy online based on the training history.
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Algorithm 2 The I-SABL algorithm. TheEMupdate(λ, h) function computes a new
policy according to Equation 4.
λ← randomPolicy()
h← 〈〉
t← 0
while user has not terminated learning do

ot ← observeWorld()
at ← λ(ot)
takeAction(at)
ft ← receiveFeedback()
h← 〈h0, . . . ht−1, (o, a, f)〉
λ← randomPolicy()
repeat

λ′ ← λ
λ← EMupdate(λ, h)

until λ == λ′

t← t+ 1
end while

4.2 SABL for Unknown Strategies: Inferring-SABL

While SABL will perform well when it knows the trainer’s µ+ and µ− parameters, in
practice the trainer’s strategy will likely be unknown. If, however, the learner knows
from explicit feedback the correct action for some observations, it can infer the strat-
egy by looking at the history of feedback for those observations. For example, if more
explicit feedback is given for correct actions than incorrect ones, then the strategy is
likely reward-focused. Under SABL’s probabilistic model we can treat the unknown
µ values representing the trainer’s strategy as hidden parameters, and can marginal-
ize over possible strategies to compute the likelihood of a possible target policy λ.
Inferring-SABL, or I-SABL, finds a maximum likelihood estimate of the target pol-
icy, given the training history. I-SABL attempts to find

argmax
λ

∑
s∈S

p(h1...t, s|λ∗ = λ),

where S is the set of possible training strategies (µ+, µ− values), p(s) is uniform for
all s ∈ S, and h1...t is the training history up to the current time t.

In some domains it will be possible to restrict the space of possible policies such
that the marginal likelihood of each policy can be explicitly computed. In the general
case, however, the space of possible policies will be exponential in the number of
observations, and so algorithms for approximate inference may be needed. In this
work we use the Expectation Maximization [7] algorithm in such cases to compute a
maximum likelihood estimate of the target policy, and treat the unknown µ+ and µ−

parameters as continuous, hidden variables ranging from 0 to 1. The ith EM update
step is then
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λi+1 = argmax
λ∈P

∫ 1

0

∫ 1

0

p(µ+, µ |h, λi) ln
[
p(h, µ+, µ |λ)

]
dµ+dµ

= argmax
λ∈P

∫ 1

0

∫ 1

0

p(µ+, µ |h, λi) ln
[
p(h|µ+, µ , λ)p(µ+, µ |λ)

]
dµ+dµ ,

where λi is the current estimate of the policy and λi+1 is the new estimate of the
policy.

As the µ parameters are continuous, we integrate over their range, which is the
unit square. Because we have no prior knowledge that one strategy is more likely
than another, we assume that all possible combinations of µ parameters are equally
probable, and independent of the desired policy (with enough data the EM algorithm
should estimate a similar distribution over values regardless of our initial assump-
tion). The probability distribution function over these parameters p(µ+, µ−|λ) = 1,
and can therefore be divided out leaving

= argmax
λ∈P

∫ 1

0

∫ 1

0

p(µ+, µ |h, λi) ln p(h|µ+, µ−, λ)dµ+dµ−

= argmax
λ∈P

∫ 1

0

∫ 1

0

p(h|µ+, µ , λi)p(µ
+, µ |λi)

p(h|λi)
ln p(h|µ+, µ−, λ)dµ+dµ−

= argmax
λ∈P

∫ 1

0

∫ 1

0

p(h|µ+, µ−, λi)

p(h|λn)
ln p(h|µ+, µ−, λ)dµ+dµ−

= argmax
λ∈P

∫ 1

0

∫ 1

0

p(h|µ+, µ−, λi) ln p(h|µ+, µ−, λ)dµ+dµ−,

with the marginal probability p(h|λn) removed as a constant. Computing this quan-
tity is still computationally intractable, as it must be optimized over all possible values
of λ. If the training history h is replaced by histories ho, for all observations o ∈ O,
then the update becomes

argmax
λ∈P

∫ 1

0

∫ 1

0

p(h|µ+, µ−, λi) ln
∏
o∈O

p(ho|µ+, µ−, λ(o)))dµ+dµ−

= argmax
λ∈P

∫ 1

0

∫ 1

0

p(h|µ+, µ−, λi)
∑
o∈O

ln(p(ho|µ+, µ−, λ(o)))dµ+dµ−

= argmax
λ∈P

∑
o∈O

∫ 1

0

∫ 1

0

p(h|µ+, µ−, λi) ln(p(h
o|µ+, µ−, λ(o)))dµ+dµ−.

With this form, we can now optimize each observation-action mapping individu-
ally, for each o ∈ O. The logarithmic term can be further simplified by splitting up
the history ho into episodes with positive, ho,+, and negative, ho,− feedback, as well
as, ho,0, episodes without feedback:
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ln p(ho|a, µ+, µ−)

= ln
[
p(ho,+|a, µ+, µ−)p(ho,−|a, µ+, µ−)p(ho,0|a, µ+, µ−)

]
= ln p(ho,+|a, µ+, µ−) + ln p(ho,−|a, µ+, µ−) + ln p(ho,0|a, µ+, µ−).

Let |ho,+| be the total number of episodes where positive feedback was received
following observation o, and let |ho,+a | be the number of episodes with positive feed-
back given for action a after observation o. Put differently, |ho,+a | is the total number
of episodes with observation o where the correct action was taken, and positive feed-
back was given, assuming that a is in fact the correct action for o. Further, let the
values |ho,−| and |ho,−a, | be defined analogously, but for negative feedback. We can
then simply the first term as

ln p(ho,+|a, µ+, µ−)

= ln
[
((1− ε)(1− µ+))|h

o,+
a |(ε(1− µ+))|h

o,+|−|ho,+
a |
]

= ln

[(
(1− ε)
ε

)|ho,+
a |

(ε(1− µ+))|h
o,+|

]

=|ho,+a | ln
(
(1− ε)
ε

)
+ |ho,+| ln ε(1− µ+).

We can similarly simplify the second term of the summation as

ln p(ho,−|a, µ+, µ−) = |ho,−a | ln
(

(ε)

1− ε

)
+ |ho,−| ln(1− ε)(1− µ+).

The terms |ho,+| ln ε(1− µ+) and |ho,−| ln(1− ε)(1− µ+) can be dropped from the
maximization as they do not depend on a, and the remaining terms can be pulled out
of the integration, as they do not depend on the µ parameters.

The final term, which does depend on the µ parameters, simplifies to

ln p(ho,0|a, µ+, µ−)

= ln
[
((1− ε)µ+ + εµ−)|h

o,0
a |(εµ+ + (1− ε)µ−)|h

o,0|−|ho,0
a |
]

=|ho,0a | ln
[
(1− ε)µ+ + εµ−

εµ+ + (1− ε)µ−

]
+ |ho,0| ln(εµ+ + (1− ε)µ−),

where |ho,0| and |ho,0a | represent the number of episodes where no feedback was
given after observation o, and the number of episodes where no feedback was given
for action a taken after observation o. Once again the second term does not depend
on the correct action and so can be removed from the optimization.

Therefore, the EM update can be simplified to maximizing the following term for
a policy’s action separately for each observation o:

λi+1(o) = argmax
a∈A

[
α(|ho,+a | − |ho,−a |) + β|ho,0a |

]
, (4)
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Fig. 1: A screenshot of the study interface. Additional buttons that begin and end training have been
cropped out

where we define values

α = ln

[
(1− ε)
ε

] ∫ 1

0

∫ 1

0

p(h|µ+, µ , λi)dµ
+dµ , and

β =

∫ 1

0

∫ 1

0

p(h|µ+, µ , λi) ln

[
(1− ε)µ+ + εµ

εµ+ + (1− ε)µ

]
dµ+dµ ,

as simplification of the expectation step, which can be computed once for each EM
update. Algorithm 2 gives an outline of the full I-SABL learning algorithm.

5 User Studies

As part of this work we conducted two sets of online user studies (one set with volun-
teers recruited via email and another using Amazon Mechanical Turk) that addressed
two main questions. First, we wanted to understand how users provide feedback (or
choose not to provide feedback), when teaching virtual agents. Second, we wanted
to evaluate the effectiveness of the SABL and I-SABL learning algorithms against
algorithms based on a numerical interpretation of reward.

In each study, participants trained a virtual agent to move towards objects as they
approached from different sides of the screen. In our volunteer studies, this agent was
represented by a sprite of a dog and the object to be approached was represented as
a rat, which would run away when the dog moved towards it. The Mechanical Turk
studies also used these images in some experiments, but in addition used other visual
representations to gauge the effect of the agent’s appearance on the user’s behavior.
The learning task used in all of the user studies could be described as a contextual
bandit domain [20], where the agent can observe the state of the world, and take
some action, but its actions have no effect on the probability of subsequent states of
the world occurring, only on the probability of the immediate feedback.

As we are interested in how the participants’ backgrounds affected their training
strategies (particularly their background with dog training), we had participants fill
out surveys before they began the study. In these surveys the participants were asked
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to indicate their age, gender, education, history with dog ownership, experience in
training dogs, and with which dog-training paradigms they were familiar (if any).

Before beginning training, users were taken through a tutorial, which first ani-
mated approaching objects and then instructed the user how to reward and punish the
learner. After the tutorial, the users began a series of training sessions; each session
was performed with a different virtual agent that learned from scratch. The user was
told that each session required that the agent be trained from scratch.

In our training task, the learning agent began at the center of the screen, and the
objects arrived once every two seconds from the edges of the screen. The objects
came from three points along each of the four edges, resulting in 12 possible obser-
vations. When an object appeared, the agent moved from the center towards one of
the edges. If the learner moved towards the edge from which the object was coming,
that object was chased away. If the learner ran to a different edge, the object entered
the field in the center and disappeared. Fig. 1 shows the agent and task environment
with the dog and rat sprites used in most of our user studies.

To train the learner to chase the objects away, users could provide reward, pun-
ishment, or no feedback. Users signaled when training was complete by pressing a
button. Data for a training session was included only if it was terminated by the user
signaling it was complete.

To get a better understanding of how users chose to train the agents, after each
training session participants were shown a textual input box, and were asked: “Please
describe the strategy you used when training the [agent] during the previous experi-
ment. For example, when did you provide reward/punishment or when did you decide
to change the task or start over (if appropriate)? Is there anything else you want to
say about training the [agent]?”

5.1 Volunteer Studies

The first set of studies we conducted (the volunteer studies) focused on how training
strategies differed between users for a fixed training task, and on how a user’s prior
training experience affected their choice of strategy. As such, the learning agent in
these studies was represented as a drawing of a dog, and the approaching object as a
rat. In both the first and second studies, each training session used a different learning
algorithm (in random order). The two volunteer studies also evaluated the SABL and
I-SABL learning algorithms developed as part of this work, comparing them against
two RL-based algorithms, M−0 and M+0 (discussed in Section 7). Specifically, M−0,
M+0, and the SABL algorithm, were evaluated in one study, while the SABL and I-
SABL algorithms were evaluated in a second study.

Participants for the two volunteer studies (which we will refer to as volunteer
study 1 and volunteer study 2, respectively) were recruited from three different sources:
(1) a senior-level game design class at North Carolina State University (credit was
offered for participation), (2) the North Carolina State University computer science
departmental mailing list, and (3) two Internet communities focused on dog training
(a Facebook group about positive-reinforcement training and a Japanese dog forum).
Although the recruiting sources were the same for both volunteer studies, the distri-
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Table 2: Summary of Amazon Mechanical Turk studies, results of which are discussed in Sections
6.2, 6.3 and 6.4

Study Sprite Condition Performance Bonus No. Participants
AMT 1 dog/rat or robot/battery agent appearance $0.25 162
AMT 2 snake/bird agent appearance $0.25 162
AMT 3 arrow/square agent appearance $0.25 120
AMT 4 dog/rat policy accuracy $0.25 30
AMT 5 dog/rat audible response $0.25 30
AMT 6 dog/rat increased bonus $0.75 30
AMT 7 dog/rat policy accuracy $0.75 30
AMT 8 dog/rat audible response $0.75 30

Fig. 2: Alternative sprite combinations used in the Mechanical Turk Studies, in addition to being
represented as a dog, the agent could also have been a robot, a snake, or an arrow

bution from each source was different since recruitment was performed at different
times.

5.2 Amazon Mechanical Turk Studies

In another set of user studies, we considered how the training task itself, and the inter-
face provided to the trainer, would affect their choice of strategy. We were particularly
interested in whether the appearance of the agent would affect strategy choice, and
whether feedback from the agent to the user would affect that choice.

To efficiently recruit a large number of participants, we ran this set of studies
using the Amazon Mechanical Turk system, which allowed us to present the studies
to a large pool of Mechanical Turk users, and to provide each of them with a small
amount of compensation for completing the study. Each study was defined within
Mechanical Turk as a Human Intelligence Task, and participants were given a base
compensation of $0.25, and were given a bonus if the agent reached 90% policy
accuracy. We had a total of eight separate Human Intelligence Tasks (which we will
denote as AMT 1 through AMT 8) which were published to Mechanical Turk. Each
task had its own set of experimental conditions, and its own set of participants, though
it is possible that some users participated in more that one task. Table 2 summarizes
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the eight individual studies published through Mechanical Turk. It should be noted
that the learning algorithm used to control the agents in these studies was chosen at
random each time, and was either the balanced feedback version of the SABL, or the
I-SABL algorithm.

There were two main sets of conditions in the Mechanical Turk studies. AMT
1 through AMT 3 looked at how changing the visual representation of the agent
affected the choice of strategy, the assumption being that users would be less likely
to punish an agent that appeared as a dog than they would an agent that appeared as an
inanimate object, or as an animal with less positive associations, such as a snake (see
Fig. 2). The sprite of the approaching object was also changed to be more appropriate
given the agent’s sprite. The alternative sprite combinations used for these studies are
shown in Table 2. AMT 1 switched randomly between the dog/rat and robot/battery
sprites, while AMT 2 tested only the snake/bird combination, and AMT 3 used only
the arrow/square combination. In AMT 1, 2 and 3 the participant received a bonus of
$0.25 for reaching 90% policy accuracy.

AMT 4 through AMT 8 looked at how feedback given by either the training inter-
face or the agent itself would affect the strategy used, and each used the dog/rat sprite
combination. In AMT 4 and AMT 7, the interface showed the user the percentage of
the agent’s policy that was correct at that moment. AMT 5 and AMT 8 had the agent
give an audible cry when it was punished.2 AMT 4 and 5 gave participants a bonus
of $0.25 for reaching 90% accuracy, while AMT 6, 7 and 8 gave bonus of $0.75.
AMT 6 gave no special feedback to the user, and was meant to evaluate the effect of
increasing the bonus to $0.75.

6 Analysis of Training Strategies Used in Practice

Our main hypothesis in conducting these studies was that human trainers follow a
variety of strategies when teaching behaviors using feedback. As such, we charac-
terized the distribution of different training strategies, and the factors that influenced
that distribution.

We used our probabilistic model of the training process to categorize the strategies
that participants in our studies followed. As discussed previously in Section 3.1, we
group strategies into four categories by the conditions under which they do and do not
provide explicit feedback (balanced feedback, reward-focused, punishment-focused
and inactive). Specifically, we estimated the µ+ and µ− parameters used for each
training session by computing the fraction of correct and incorrect actions that did
not receive explicit feedback. The strategy for a session was classified as balanced
if both µ+ and µ− were less than 1

2 (recall that low µ+ and µ− values correspond
to frequent explicit feedback). If µ+ was less than 1

2 while µ− was greater than 1
2 ,

the strategy was classified as reward-focused, while if the opposite case was true the
strategy was classified as punishment-focused. The strategy was classified as inactive
if both µ+ and µ− were greater that 1

2 .

2 Though users were instructed to enable their computer speakers, we have no way of knowing whether
the participant could actually hear the dog cry.
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Table 3: Breakdown of strategies used in AMT 1, 2 and 3 when training an agent appearing as a dog,
robot, snake or arrow

agent balanced feedback reward-focused punishment-focused inactive
dog 151 25 1 1
robot 188 21 0 4
snake 64 7 2 3
arrow 43 6 1 2

Table 4: The number of participants beginning a training session using one strategy (rows) and
ending it using another (columns). Entries on the diagonal indicate that no change occurred

(a) Volunteer Study 1

begin:
end: balanced feedback reward-focused punishment-focused inactive

balanced feedback 65 4 2 0
reward-focused 10 52 1 1
punishment-focused 2 1 4 1
inactive 0 0 0 1

(b) Volunteer Study 2

begin:
end: balanced feedback reward-focused punishment-focused inactive

balanced feedback 17 2 0 0
reward-focused 2 59 0 1
punishment-focused 0 0 0 0
inactive 0 1 1 0

We first consider the results of volunteer studies 1 and 2. In those studies we are
primarily interested in the overall distribution of strategies used, as well as how the
user’s background influenced their choice of strategy. We only consider data from the
105 users (between the two studies) who completed at least one training session. Ta-
ble 1 in Section 3.1 summarizes the distribution of training strategies from volunteer
studies 1 and 2.

Recall that some participants for these studies were explicitly recruited due to
their experience in training dogs and they trained a learner depicted with a dog sprite
(Fig. 1). Overall, the dominant strategies in these studies were reward-focused (fre-
quent rewards, few punishments) and balanced feedback (frequent rewards and pun-
ishments). The least used strategy was inactive, which is reassuring, as the use of
such a strategy could indicate that users were confused about the task or interface, or
were not fully engaged with the task.

We expected the balanced feedback strategy to be common, because the strategy
represents providing as much information to the learner as possible. As one partici-
pant described it in the post-experiment survey, “I just punished the dog if they went
to the wrong side and rewarded them when they went to the right side.” We also
expected to see many users using reward-focused strategies, since that is a common
dog-training paradigm. One participant explained, “I tried to Reward only. Rewarded
when the dog was moving or had moved toward the rat, and provided no opportunity
for Reward when the dog moved away from the rat.”
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Table 3 summarizes the distribution of strategies used in the first three Mechani-
cal Turk studies (AMT 1, 2 and 3). We only report data from training sessions where
at least 50% policy accuracy was achieved.3 In this study, unlike the first two, bal-
anced feedback strategies were much more common than reward-focused strategies.
However, reward-focused strategies were still common, and still occurred much more
frequently than punishment-focused or inactive strategies.

We note that a few participants changed strategies during training sessions. We
divided each experiment at its temporal midpoint, and classified the strategy used for
the first half of the experiment, and that used for the second half. Table 4(a) shows
how users changed strategies over time in volunteer studies 1 and 2. Overall, changing
strategy was uncommon, with 84.7% of training sessions in study 1 following a single
strategy. There were however, a number of cases where users switched from a reward-
focused strategy to a balanced feedback strategy, which occurred in 6.9% of training
sessions in study 1. This change may have been an attempt by the users to preserve the
desired behavior once it had been learned, that is, once the agent was taking mostly
correct actions, incorrect actions were singled out for explicit punishment.

Our probabilistic model does not explicitly account for changes in strategy, though
it could be extended to do so. While existing work has addressed trainers changing
their strategies by actively encouraging users to give certain types of feedback [19],
it may be more effective to integrate the notion of strategy change with an overall
model of trainer feedback, such as the one presented here.

6.1 Effects of Dog-Training Experience

As we are interested in the degree to which a participant’s experience with training
dogs influenced their strategy, we asked each user to rate their level of experience in
dog training on a four-point scale from “None” to “I am an Expert.” Many partici-
pants had no experience training dogs, and those that did varied in their degree of
experience.

To visualize these results, we organize the data into a contingency table and depict
it as a residual mosaic plot (see Fig. 3(a)). There are a few important things to note
about such plots. The data is organized into boxes, with one column of boxes for each
value of one of the categorical variables. The order of the boxes within each column
follows the set of values of the other categorical variable. The area of a box in the plot
indicates the number of responses in that category. The width of each box represents,
in aggregate, the probability that a response will fall into that column, regardless of
which row it is in, e.g., Pr(Experience = some).

The height of a box indicates the amount of data in that column when the value of
the row is considered, e.g., Pr(Strategy = reward− focused|Experience = none).
Thus, the more asymmetric any box is, the more it deviates from the expected value;
tall thin rectangles indicate more data in that entry than expected and short wide
rectangles indicate fewer data in that entry than expected.

3 We exclude more data in the Mechanical Turk studies to remove participants who do the minimum
amount of work to receive their compensation.
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(a) Volunteer study 1

(b) Volunteer study 2

Fig. 3: Mosaic plots (generated with the R language) with Pearson residuals for strategies in the
volunteer studies, grouped by dog-training experience (Note that boxes with solid borders indicate
a deviation above the expected value, while boxes with dotted borders indicate a deviation below
the expected value). Users with no experience were more likely to use balanced-feedback strategy,
users with some experience were more likely to use a reward-focused strategy. For volunteer study
1, differences were 2–4 standard deviations from expected (significant with p < 0.05)
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Fig. 4: The distribution of participants in AMT 1, 2 and 3 who used a reward-focused strategy, based
on their experience with dog training, grouped by the sprite they were training

Additionally, the color of an entry indicates whether or not the rectangular shape
of an entry represents a significant deviation from the expected value. A shaded entry
means that the value that box represents is more than two standard deviations above
(or below) the expected value, and is therefore significant with p < 0.05. If the border
of the cell is solid, then the deviation is above the expected value, if it is dashed, it is
below expected.

Fig. 3(a) shows the relationship between dog-training experience and the em-
ployed feedback strategy in a mosaic plot, for participants in volunteer study 1. As
a common approach to dog training is to only use positive feedback, we expected
that users with dog-training experience would be more likely to use reward-focused
strategies than those without experience.

Indeed, in volunteer study 1, we found that the more dog-training experience a
user had, the more likely they were to use a reward-focused strategy. This relationship
was found to be statistically significant at the 95% confidence level. However, this
relationship did not appear as strong in volunteer study 2 in which users with at least
some experience were very likely to use reward-focused strategies (Fig. 3(b)). This
difference likely reflects differences in the distribution of participants between the
two studies, with the second study having only four participants with no training
experience.

Both volunteer studies 1 and 2 specifically recruited participants with dog-training
experience, and that choice almost certainly affected the observed frequency of dif-
ferent strategies. The Mechanical Turk studies, however, should have no bias towards
users with training experience.

6.2 Effect of Agent Appearance

The Mechanical Turk studies focused primarily on how different aspects of the train-
ing task and the interface would affect the training strategies used. AMT 1, 2 and 3
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Table 5: Breakdown of strategies used when training a dog with policy-accuracy displayed and a dog
with sound, as well as when training a dog with the $0.25 performance bonus and with the increased
$0.75 bonus

Experiment Performance Training balanced reward- punishment- inactive
Bonus Conditions feedback focused focused

AMT 1 $0.25 base 151(85%) 25(14%) 1(.5%) 1(.5%)
AMT 4 $0.25 policy accuracy 32(84%) 3(8%) 1(2.7%) 2(5.3%)
AMT 5 $0.25 audible response 18(72%) 6(24%) 0(0%) 1(4%)
AMT 6 $0.75 base 46(88%) 5(10%) 0(0%) 1(2%)
AMT 7 $0.75 policy accuracy 38(79%) 7(15%) 1(2%) 2(4%)
AMT 8 $0.75 audible response 33(72%) 11(24%) 1(2%) 1(2%)

the question of whether the appearance of the agent would affect the distribution of
strategies used, either because users believed that an agent resembling a dog would
respond better to strategies that are effective with real dogs, or because the appearance
of an animal made users more averse to giving punishment. Recall that the Mechani-
cal Turk studies asked the user to teach the same behavior as in the volunteer studies,
but varied the sprites between a dog/rat, robot/battery, snake/bird, or arrow/box.

As shown in Table 3, the distribution of strategies in AMT 1, 2 and 3 was rela-
tively insensitive to the agent’s appearance. Fisher’s exact test shows that the number
of times each of the four strategies was used was not significantly different (p > 0.21)
between subjects training the dog and those training the robot. Similarly, we did not
see differences in strategies between the snake and the arrow (p = 0.10).

Despite a lack of statistically significant findings, there is some weak evidence
that the learning agent’s sprite did influence trainers’ choices of strategies. Consider
Fig. 4, which shows the distribution of dog-training experience for those trainers that
used a reward-focused strategy, grouped by sprite. What is interesting to note is that
participants with dog training experience used reward-focused strategies in roughly
equal proportion when training the dog and the robot; however, for participants with-
out dog training experience, it appears a higher percentage used the reward-focused
strategy on the dog when compared to the robot. One plausible explanation is that
empathy toward the dog caused users to avoid explicit punishment, even if they were
unfamiliar with dog-training techniques.

6.3 Effect of Feedback from the Agent

We also consider how having the agent or the training interface provide some feed-
back to the trainer might influence their choice of strategy. AMT 4 & 5, and AMT
7 & 8, looked at the effects of providing feedback to the trainer in various forms.
AMT 4 and AMT 7 displayed the current percentage of the learner’s policy that was
correct, while AMT 5 and AMT 8 had the dog give an audible cry in response to pun-
ishment. As AMT 7 & 8 increased the participants performance bonus to $0.75 from
$0.25, we consider AMT 6 to be a baseline against which to compare AMT 7 & 8,
while AMT 1 with the dog sprite would be a baseline for AMT 4 & 5, as it only had
a $0.25 performance bonus.

Table 5 summarizes the frequency of strategies used by the human trainers in
these studies. The results are in line with the other Mechanical Turk studies, with
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Fig. 5: The distribution of participants in AMT 6-8 who used a reward-focused strategy based on
their experience with dog training, grouped by different training conditions

the dominant training strategy being balanced feedback, followed in popularity by
reward-focused. Fisher’s exact test shows that the number of times each of the four
strategies was used was not significantly significant (p = 0.25) between AMT 4 and
AMT 5, nor were the differences between AMT 6, 7 and 8 significant (p = 0.35). We
do note however that the ratio of balanced feedback to reward-focused strategies is
smallest (three to one) for experiments where the dog gave an audible cry in response
to punishment, which suggests that more participants chose a reward-focused strategy
when the dog gave such a response than when it did not. This would be in line with
our expectation, since the audible cry could lead human trainers to empathize with
the learner, and so give fewer punishments during training.

Fig. 5 shows the distribution of participants who used a reward-focused strategy
based on their experience with dog training. Fisher’s exact test shows that the differ-
ence was not statistically significant (p = 1). We still find that more trainers without
any dog training experience chose to use reward-focused strategies in the dog with
policy accuracy and dog with audible response training conditions compared against
the control condition. We can therefore conclude that different training factors did
influence workers’ choices of training strategies. That means, if the accuracy of the
learned policy was shown to the trainer, or if the dog gave an audible cry after being
punished, human trainers were more likely to use reward only strategies.

6.4 Trainer Mistakes

One of the main assumptions of our probabilistic model is that trainers can make
mistakes when providing feedback (the ε parameter, discussed in Section 3.2). The
results of both the volunteer studies and the Mechanical Turk studies demonstrate
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that trainer errors are common, and that any approach to learning from feedback
must therefore be able to recover from such errors.

Note that since we cannot know if a user made a mistake for actions that did not
receive feedback, we can only estimate ε from cases in which explicit feedback is
provided. We estimated the average ε for participants in volunteer studies 1 and 2
combined to be 0.085 on a 0 to 1 probability scale. In AMT 1, where agents were
represented as both dogs and as robots, the estimated average ε was 0.034.

The comments made by some of the participants suggest possible sources of er-
ror. One participant explained, “... i [sic] kept getting mixed up at first and hitting
the wrong buttons...”, suggesting that error could be reduced with a clearer interface
design and more user practice. Another user commented, “At first it got frustrating
because my timing was off on the reward and punishment. That doesn’t help the dog
and they become afraid and stay away because they are confused.” Our model does
not currently account for errors in the timing of feedback. This problem, however,
may be mitigated by taking the weighted average of feedback over a longer time
window, as was done in some related work [15].

7 Performance of SABL and I-SABL

In addition to exploring the distribution of trainer strategies, the two volunteer stud-
ies were used to evaluate the performance of the SABL and I-SABL algorithms. In
addition to these studies, we also conducted experiments using SABL and I-SABL
with simulated trainers that generated feedback according to our probabilistic model.
The results in this section will show that, learning the trainer’s strategy, and using
that knowledge to interpret the lack of feedback can improve learning performance,
at least when a large number of users follow reward-focused training strategies.

Though the results presented in Section 6 show that balanced feedback training
strategies were the most common overall (except in volunteer study 2), there are a
number of reasons to believe that algorithms which explicitly consider trainer strat-
egy would be effective with users who do not use such a strategy as frequently. For
one, while balanced strategies were the most common, we did observe a significant
number of users following reward-focused strategies, including in the Mechanical
Turk studies. As the simulated trainer experiments will show, SABL (assuming a
reward-focused strategy) and I-SABL do not perform significantly worse than SABL
(assuming a balanced feedback strategy) when the trainer is actually following a bal-
anced feedback strategy. Therefore, we argue that SABL and I-SABL can improve
performance for users following reward-focused strategies without significantly im-
pacting performance for users following balanced feedback strategies. In addition, be-
cause of the way we classify strategies as balanced-feedback versus reward-focused
or punishment-focused, it is still possible for a user following a balanced feedback
strategy to have some bias towards providing implicit feedback for correct or incor-
rect actions (if for example they always give explicit feedback for incorrect actions,
but sometimes fail to give feedback for correct actions), and so those users may still
benefit from the SABL/I-SABL algorithms.
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7.1 Reward Based Algorithms, M−0 and M+0

To evaluate the SABL and I-SABL algorithms, we compare them against two al-
gorithms (M−0 and M+0) which are meant to be representative of algorithms from
the literature which treat human feedback as being representative of numeric reward.
M−0 and M+0 both map each feedback to a numeric reward value, +1 for positive
feedback, and−1 for negative feedback. Both algorithms maintain a table containing
the average reward value received for observation/action pair with a value of zero for
any state action pair that has not yet been encountered during learning. Unlike SABL
and I-SABL, M−0 and M+0 use the cumulative value of all feedback given during an
episode. Both algorithms take the action which has the highest average reward of all
actions for the current state. M−0 and M+0 differ in how they handle of cases where
no feedback is given. M−0 is designed to be most similar to the TAMER frame-
work [17] and ignores episodes without feedback, making no changes to its value
estimates in that case. M+0 is designed to be similar to the COBOT system [11] in
how it handles episodes without feedback, treating no feedback as a reward value
of zero. Therefore, with M+0, value estimates for actions will return to zero after
enough episodes with no feedback.

As M−0 ignores episodes without feedback, there is no way for it to interpret the
lack of feedback using knowledge of the trainers strategy. M+0 could, however, be
modified to learn from the lack of feedback, by assigning a positive or negative reward
value to episodes without feedback, depending on the trainer’s strategy. The M−0
algorithm would still behave differently from SABL, even if both assumed the same
strategy. If, for example, both assumed a punishment-focused strategy (and the trainer
actually followed such a strategy), then M+0 should assign a positive reward value
(one less that the value assigned to explicit positive feedback) to episodes without
feedback. If, based on explicit feedback, both algorithms had identified the correct
action for a state, then their subsequent actions for that state would yield little explicit
feedback. After each episode without feedback, SABL would increase the estimated
likelihood of the action being correct, while M+0 would move its reward estimate
for the action closer to the reward value associated with the lack of feedback. This
could have the effect of reducing that action’s reward estimate, and actually cause the
agent to eventually select a different action, which would be undesirable if the action
is actually correct.

We do not, however, explore the possibility of using M+0 with strategy knowl-
edge here, and to our knowledge a similar approach has not been described in the
literature. As stated above, in these experiments we always assume that M+0 assigns
a reward value of zero to episodes without feedback.

7.2 User Studies

Volunteer studies 1 and 2, in addition to evaluating the types of strategies used by
human trainers, also evaluate the performance (in terms of the time required to learn
the target policy) of SABL and I-SABL, both against each other and against existing
approaches. Volunteer study 1 compared SABL against M−0 and M+0, and had 126
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Fig. 6: Average number of episodes required to learn a policy that was correct for at least 50%,
75%, or 100% of observations, and until the participants terminated the session. (* indicates that
differences were statistically significant for that column)

users, of which 71 completed training at least one learner. Volunteer study 2 compared
I-SABL against SABL and had 43 users, of which 26 completed training at least one
learner. In both of these studies, the base SABL learner assumed that the trainer
followed a balanced feedback strategy, that is, µ+ = µ−.

Our performance measure was the average number of steps it took each agent to
reach each of four criteria. Three of the criteria were when the learner’s estimate of
the policy was 50%, 75%, and 100% correct. The fourth criterion was the number
of steps before the user terminated the experiment. Results from the first user study
show that learners using SABL tended to outperform those using M−0 and M+0.
Fig. 6(a) shows the number of steps to reach each of the four criteria. The bars for
SABL are lower than their counterparts for the other algorithms, showing that on
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average the SABL learner took fewer steps to reach the 75%, 100%, and the user
termination criteria. Unpaired two sample t-tests show that the differences between
the SABL learner and theM−0 andM+0 learners, for the 75%, 100% and termination
criteria, were statistically significant (p < 0.05). In addition, a larger percentage of
sessions using SABL reached 50%, 75%, and 100% policy correctness than using
M−0 or M+0. Pearson’s χ2 tests show that the differences between the number of
times the SABL learner and the M−0 and M+0 learners reached the 100% criteria
were statistically significant (p < 0.01), with the SABL, M−0 and M+0 learners
reaching 100% correctness 53%, 17% and 19% of the time respectively.

In the second study, we compared I-SABL against SABL using the same perfor-
mance criteria to test whether inferring trainers’ strategies improves learning perfor-
mance. Fig.6(b) shows the number of steps for each algorithm to reach the criteria.
Of interest are the very small (statistically insignificant) differences between SABL
and I-SABL for the 50% and 75% policy correctness criteria. The difference be-
comes much larger at the 100% and user-selected termination criteria, where I-SABL
reaches each criteria in significantly fewer steps. This is expected, as improvements
in learning performance for I-SABL will be most pronounced when the agent has
received enough feedback for some observations to infer the trainer’s strategy. Un-
paired t-tests show these performance differences are statistically significant, with
p = 0.01 for the 100% and p < 0.05 for the termination criteria. A larger percentage
of sessions using I-SABL reached 50%, 75%, and 100% policy correctness before
termination than using SABL. Pearson’s χ2 tests show that the differences between
the number of times the I-SABL learner and the SABL learner reached the 100%
criteria were significant (p < 0.01), with the I-SABL learner reaching 100% pol-
icy correctness 50% of the time, and the SABL learner reaching it 23% of the time,
respectively.

We note that SABL took more episodes on average to learn in volunteer study 2
than it did in volunteer study 1. We attribute this difference to the fact that users with
dog training experience, who were much more common in study 2 than in study 1,
were more likely to use a reward-focused training strategy. As the SABL algorithm
assumed a balanced feedback strategy, it ignored episodes without feedback, and so
performed more poorly under reward-focused strategies which provided fewer ex-
plicit feedbacks. This does however raise the question of how the M−0 and M+0

algorithms would have performed in this study. As users gave less explicit feedback
in volunteer study 2, we suggest that M−0 and M+0 would have suffered a similar
reduction in performance as SABL, since they too cannot directly consider trainer
strategy (though M+0 does include episodes without feedback in its value estimate).
As M−0 and M+0 were not evaluated in volunteer study 2, however, we cannot com-
pare their performance to that of SABL in that study, nor can we directly compare
their performance to the performance of I-SABL.

7.3 Simulated Trainer Experiments

To help understand how strategy inference allows I-SABL to outperform SABL, we
ran several experiments with simulated trainers in contextual bandit domains, com-
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SABL and I-SABL

paring I-SABL against SABL (with SABL’s µ+=µ−=0.1). The simulated trainer
chose a target policy at random, and generated feedback using the same probabilistic
model underlying SABL and I-SABL. We tested each learning agent on tasks con-
sisting of 2, 5, 10, 15 and 20 observations and 2, 3, or 4 actions. These experiments
were conducted for a range of pairs of µ+ and µ− values for the simulated trainer.
Each µ parameter was varied, from 0.0 to 0.8, such that µ−+µ+≤1. The trainer’s
error rate was ε=0.2, matching SABL and I-SABL’s assumed value. Learners in these
studies took actions at random but kept an estimate of the most likely policy.

The results show that I-SABL is able to take advantage of information from
episodes where no explicit feedback is given. Fig. 7 shows two curves representing
the number of steps it took the SABL and I-SABL agents to find the correct pol-
icy, for varying µ parameters. The difference in performance between I-SABL and
SABL increases (in favor of I-SABL) as the trainer’s µ parameters diverge from the
balanced strategy that SABL assumes. In addition, I-SABL compares well to SABL
even when the trainer follows a balanced strategy.

8 SABL in Sequential Domains

Results presented thus far show SABL and I-SABL in contextual bandit domains,
where the agent can observe the world, but it’s actions have no effect on the probabil-
ity of subsequent states of the world. We can also apply these algorithms to sequential
decision making domains. For efficiency, we limit the set of policies considered by
SABL and I-SABL, by assuming that the trainer teaches an optimal policy for some
set of conditions. In a grid world, for example, the trainer could teach the agent to
reach some goal location.

We tested SABL and I-SABL for sequential domains in a 15 by 15 grid world
with a simulated trainer. The algorithms considered 48 possible goal states, as well
as two special kinds of “obstacles”—states the agent could move in to or out of but
may have needed to avoid—depending on the particular obstacle condition. There
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Fig. 8: The sequential domain. Blue squares represent possible goal states, circles represent obstacles
of type one and stars represent obstacles of type two

Table 6: For all algorithm and simulated trainer pairs tested, the average number of steps before
the agent correctly identified the intended policy as the most likely, and the average number of
explicit feedbacks that were provided before the intended task was identified as the most likely.
“N/A” indicates that the algorithm was unable to learn the correct policy in the majority of training
runs

Trainer’s Learning Identify 95% Conf. # Explicit 95% Conf.
Strategy Algorithm Policy Int. Feedbacks Interval

balanced
feedback

I-SABL 44.4 ±11.7 39.1 ±10.4
SABL - balanced feedback 46.7 ±9.3 40.5 ±8.1
SABL - reward-focused 67.3 ±21.1 60.0 ±19.3
SABL - punishment-focused 65.6 ±20.6 58.1 ±18.5

reward-
focused

I-SABL 68.7 ±20.5 54.1 ±17.7
SABL - balanced feedback 152.8 ±27.9 71.4 ±18.2
SABL - reward-focused 65 ±23.8 50.8 ±20.4
SABL - punishment-focused N/A N/A N/A N/A

punishment-
focused

I-SABL 76.2 ±25.4 14.8 ±3.9
SABL - balanced feedback 190.9 ±27.3 37.4 ±4.5
SABL - reward-focused N/A N/A N/A N/A
SABL - punishment-focused 51.3 ±17.9 11.1 ±2.8

were four different obstacle conditions (no obstacles, avoid type one, avoid type two,
avoid both types), resulting in 48 × 4 = 192 possible optimal policies. Fig. 8 shows
the grid world used. Note that the learners did not actually receive any information
about the goal or obstacles from the environment, and so could only learn the correct
behavior based on trainer feedback. In the sequential case, SABL and I-SABL simply
assumed that the trainer’s target policy was one of the 192 possible optimal policies.

In this case SABL and I-SABL only considered a small, finite set of possible
µ parameter combinations, representing balanced, reward-focused, and punishment-
focused trainer strategies. Additionally, to leverage this simplification rather than use
EM on the entire feedback history at each step, we adapted I-SABL to update its prior
belief in each strategy and policy to the posterior probability distribution given by
the most recent feedback and the current distribution over trainer strategies. Trainer
strategies were defined by {µ+, µ−} = {0.1, 0.1} for the balanced feedback strategy,
{µ+, µ−} = {0.1, 0.9} for the reward-focused strategy, and {µ+, µ−} = {0.9, 0.1}
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for the punishment-focused strategy. We did not consider the inactive strategy, as it
was uncommon in the user study. For all strategies, ε = 0.05, which is lower than
the assumed error rate used in our user studies, but is closer to the actual error rate
observed in those studies. We should note that the values of the µ parameters were
chosen to represent strategies that strongly prefer explicit feedback in all cases, or
extremely reward or punishment focused strategies. This was done both to highlight
differences between the learning algorithms, and because such strong preferences
were observed in the user studies.

Table 6 summarizes the results for all algorithm and trainer strategy pairs. For
all simulated trainers, I-SABL and SABL using the correct feedback strategy iden-
tified the intended policy the fastest, again demonstrating that I-SABL does not suf-
fer significantly from initial uncertainty about the trainer strategy. When the simu-
lated trainer used a balanced strategy, SABL using incorrect strategy assumptions
performed worse, but not significantly worse, likely due the fact that the simulated
trainer almost always gave explicit feedback. Regardless of their strategy assump-
tion, SABL learners always interpret explicit feedback in the same way. However,
when the trainer does not employ a balanced strategy, incorrect SABL assumptions
will be more problematic. If SABL assumes a balanced feedback strategy while the
trainer follows a reward-focused strategy, the policy can be learned, but more steps are
needed to do so because many steps receive no explicit feedback and so are ignored.
If SABL assumes the opposite strategy (e.g., assuming punishment-focused when it
is actually reward-focused), then the agent may never learn the correct policy. As-
suming the opposite strategy likely performs so poorly because it misinterprets what
a lack of feedback means. If SABL assumes a punishment-focused strategy when
it’s actually a reward-focused strategy, it will interpret the lack of feedback when its
action is incorrect as evidence that it is correct.

In these results, it is also interesting to note how few explicit feedbacks are re-
quired for I-SABL and SABL (with a correct strategy assumption) to learn when the
trainer follows a punishment-focused strategy. As it learns, more of the agent’s ac-
tions are correct, resulting in less explicit feedback; since I-SABL (and SABL assum-
ing a punishment-focused strategy) correctly interpret this lack of explicit feedback
as positive, it does not hinder learning. In these experiments the actual and assumed
error rates ε were relatively low at 0.05. While a higher error rate would certainly
have meant that each algorithm would take longer to learn (more mistakes would
need to be corrected, requiring more time and more feedback), it is unclear how the
error rate would affect the relative performance of SABL and I-SABL. While more
erroneous feedback could reduce the quality of I-SABL’s estimate of the trainer’s
strategy, knowledge of trainer strategy could also allow I-SABL to more quickly re-
cover from mistakes.

9 Future Directions

This work has only considered cases where the state and action spaces of the task do-
main are discrete, such that the trainer’s desired behavior can be represented simply
as a list of each state with its correct action. In many real world domains with large or



Learning Behaviors via Human Delivered Discrete Feedback 31

continuous state spaces, it may not be possible for the target policy to be represented
in such an explicit way, or it may be difficult for the agent to demonstrate every state
action pair possible. In such cases, it may be necessary for the policy to be represented
some parametric function approximator that can handle continuous state features, and
that allows for some degree of action generalization between states. While this work
has considered only discrete policies, we suggest that it would be possible to learn
such continuous, parametric policy representations under the SABL/I-SABL frame-
work. For example, policies in continuous spaces can be represented as multilayer
perceptrons, such that learning the target policy involves finding weight and bias pa-
rameters of the network that minimize or maximize some objective function based
on examples of that policy [26]. The policy likelihood function that SABL attempts
to maximize could be used as an objective function for training such a network via
backpropagation. Similarly, the expected likelihood function maximized in each iter-
ation of I-SABL’s expectation-maximization algorithm could be used as the objective
function for training a network, such that I-SABL would attempt to find a maximum
likelihood estimate of the network parameters, rather than of the policy itself.

Real world domains are also often sequential in nature, such that information
about the dynamics of the environment can be used to help identify the target policy.
While this work considers learning from feedback in sequential domains, by combin-
ing our learning framework with algorithms for inverse reinforcement learning, we
note that the applicability of such IRL algorithms to many real world domains often
depends on their ability to compute good, if not optimal, policies in those domains.
Much of the work in inverse reinforcement learning has been restricted to cases where
the state space is discrete, where algorithms such as value iteration, policy iteration,
or linear programming can be used to compute optimal policies [21, 22]. Even when
reward functions can be modeled based on continuous features, the underlying do-
main may still need to be discretized during the planning phase [1]. Similarly, our
maximum likelihood IRL approach relies on the existence of an efficient planning al-
gorithm for the task domain, which in our experiments is discrete. Future work might
consider how SABL and I-SABL could be combined with IRL algorithms that are
better suited to continuous domains [28]. Extensions of our learning algorithms to
continuous domains, however, are beyond the scope of this work and are reserved for
future studies.

As discussed earlier in this work, there are many aspects of trainer strategies
which are not accounted for in our model. For one, we have no explicit model of how
a trainer’s strategy can change over time, or what such changes in and of themselves
are meant to convey to the learning agent. In the survey section of the user studies,
some participants discussed how they changed strategy over time. One participant
explained, “I rewarded for every time the dog faced the side the rat came from. I
ignored incorrect responses. As the dog became better and better at heading to the
rat side, I implemented random reward for correct responses and continued to ignore
incorrect responses.”

Another participant similarly believed that rewards would be more useful early,
while punishments would be better later on, “I allowed for mistakes in the begin-
ning because the dog was ‘new’ to the task. I rewarded any successful attempts with
increasing amounts of reward up to 5 rewards per successful guess. Then, I applied
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punishments to correct mistakes since the dog had ‘learned’ what the correct action
was.” In both of these cases, the meaning of the lack of feedback changes over time,
going from implicitly negative to neutral or implicitly positive. Our model could be
extended to account for this change, so as to correctly interpret the lack of feedback
throughout the training session.

Future work could also consider how to handle various types of trainer error.
Specifically, we currently have no way to account for delay in the feedback given that
might cause it to be associated with the wrong action. There is also the possibility that
feedback has different interpretations for different parts of a task, that is, for different
subsets of states and actions. Developing models of feedback that account for these
more complex and variable training strategies would allow us to build learning agents
that could better adapt to the user’s strategy.

10 Conclusion

This work has demonstrated that, when considering the problem of learning from
trainer feedback, significant improvements in learning performance can be achieved
by applying relatively simple models of trainer strategy. We have also shown that
there is significant variability in trainer strategy that can be exploited. We can draw
two main conclusions from the empirical results presented in this work.

1. Human trainers use a variety of strategies when training virtual agents, and may
change strategy while training. These results suggest that trainers’ choices of
strategies can be influenced by the trainers’ backgrounds, and, at least to some de-
gree, by the nature of the training task itself. The different strategies followed by
trainers necessitate different interpretations of cases where no feedback is given,
with the lack of feedback indicating a correct action under some strategies, and
an incorrect action under others.

2. We have presented two probabilistic inference algorithms, SABL and I-SABL,
which explicitly take trainer strategy into account. We have demonstrated with
real users that these algorithms can learn behaviors with fewer trainer feedbacks
than algorithms based on a numerical interpretation of feedback, and we have
demonstrated that I-SABL in particular is able to adapt to trainers’ strategies on-
line, and so is able to learn more efficiently by correctly interpreting what the lack
of feedback means.

Based on these results we argue that incorporating similar, though potentially more
general models of human feedback into systems designed to learn and reason in more
complicated, real-world environments will allow us to build robots and virtual agents
that can learn useful behaviors efficiently, and in a way that is intuitive for the average
user who has little or no backgrounds in programming or artificial intelligence.
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