
Training an Agent to Ground Commands with Reward and Punishment

James MacGlashan∗, Michael Littman∗, Robert Loftin+, Bei Peng#, David Roberts+, Matthew E. Taylor#

∗ Computer Science Department, Brown University
+ North Carolina State University

School of Electrical Engineering and Computer Science, Washington State University

Abstract
As robots and autonomous assistants become more capable,
there will be a greater need for humans to easily convey to
agents the complex tasks they want them to carry out. Con-
veying tasks through natural language provides an intuitive
interface that does not require any technical expertise, but im-
plementing such an interface requires methods for the agent
to learn a grounding of natural language commands. In this
work, we demonstrate how high-level task groundings can be
learned from a human trainer providing online reward and
punishment. Grounding language to high-level tasks for the
agent to solve removes the need for the human to specify low-
level solution details in their command. Using reward and
punishment for training makes the training procedure simple
enough to be used by people without technical expertise and
also allows a human trainer to immediately correct errors in
interpretation that the agent has made. We present prelim-
inary results from a single user training an agent in a sim-
ple simulated home environment and show that the agent can
quickly learn a grounding of language such that the agent can
successfully interpret new commands and execute them in a
variety of different environments.

1 Introduction
As robots and autonomous assistants become more capable,
there will be a greater need for humans to easily convey
to agents the complex tasks they want them to carry out.
Conveying tasks through natural language provides an intu-
itive interface that does not require any technical expertise,
but implementing such an interface requires methods for the
agent to learn a grounding of natural language commands.
In this work, we propose a method for learning task ground-
ings of natural language commands from online reward and
punishment given by a human trainer.

While there is existing work on learning command
groundings (see Section 5), most of it is focused on natu-
ral language commands that specify the actions the agent
needs to take. However, we should not have to explicitly
tell an autonomous agent how to complete a task; the agent
should solve the problem on its own. For example, if a hu-
man wants a robot to bring them a red bag, they should sim-
ply be able to say “bring me the red bag,” instead of detail-
ing how the robot needs to navigate to the bag, pick it up,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and navigate back to them. Existing approaches for train-
ing natural language command groundings focus on using
training data that consists of language paired with example
demonstrations. However, depending on how complex an
agent is, manually controlling it to provide demonstrations
may be inconvenient. For instance, if the agent is a robot,
teleoperating the robot to provide it demonstrations may 1)
be time consuming and cumbersome without a well devel-
oped interface, and 2) require the operator to have sufficient
expertise to produce high quality demonstrations. An easier
way to train the robot is to reward and punish the robot as
it is executing a command it was given, similar to how dogs
are trained to follow a command through reward and punish-
ment. A reward and punishment paradigm has the additional
advantage that if an agent misunderstands a command, a hu-
man can easily correct the agent as the agent is attempting to
carry out the command, rather than stopping the agent and
then providing a new demonstration and language example.

Our approach to learning natural language command
groundings makes use of a generative model of tasks, lan-
guage, behavior, and trainer feedback. The task, language,
and behavior model builds on prior work by MacGlashan
et al. (2014) in which tasks are defined as factored re-
ward functions and termination conditions of an MDP, lan-
guage is modeled using IBM Model 2 (Brown et al. 1990;
1993), and behavior is generated from the optimal policy
for a given task. We extend this approach to enable learn-
ing from reward and punishment, rather than demonstra-
tion, by including in the model trainer feedback. To model
trainer feedback, we adopt algorithms proposed by Loftin et
al. (2014) for performing task inference from human feed-
back (without any language grounding) in which feedback is
treated as a discrete value (reward, punishment, neutral) and
given by a human trainer according to parameters defining
their willingness to reward or punish correct and incorrect
action selection. The contribution of our work is to show
how these two approaches can be combined in a fully inter-
active system that enables an agent to learn the task ground-
ings of natural language commands.

In our learning algorithm, an agent is first given a com-
mand, which induces a probability distribution over the set
of possible tasks in the environment. The agent then plans
a solution to the most likely task using an “off-the-shelf”
MDP planning algorithm and begins following the policy.

After each action execution, the trainer either rewards, pun-
ishes, or provides no feedback to the agent, which is evi-
dence for or against each of the possible tasks. If a different
task than the one currently being executed becomes more
likely than the current one, then the agent switches to fol-
lowing the policy of the new most likely task. After a task
has been completed, the final probability distribution over
tasks is used to update the language model so that the agent
will better understand future commands.

In this work we present preliminary results from a single
user training an agent in a simple simulated home environ-
ment and show that the agent can quickly learn to correctly
interpret and execute new commands.

2 Background
To represent tasks, we make use of the Object-oriented
Markov Decision Process (OO-MDP) formalism (Diuk, Co-
hen, and Littman 2008). OO-MDPs extend the conventional
MDP formalism by providing a rich state representation.
MDPs are defined by a four-tuple: (S, A, T ,R), where S is
a set of states of the world;A is a set of actions that the agent
can take; T describes the transition dynamics, which specify
the probability of the agent transitioning to each state given
the current state and the action taken; and R is a function
specifying the reward received by the agent for each transi-
tion. MDPs may also have terminal states that cause action
to cease once reached. The goal of planning in an MDP is to
find a policy—a mapping from states to actions—that maxi-
mizes the expected discounted cumulative reward.

An OO-MDP extends the classic MDP formalism by in-
cluding a set of object classes, each defined by a set of at-
tributes, and a set of propositional functions whose parame-
ters are typed to object classes. A state in an OO-MDP is a
set of objects that each belong to one of the possible object
classes; each object has its own state which is represented as
a value assignment to the attributes of its associated object
class. The propositional functions defined in the OO-MDP
are functions of the state of its object parameters. For exam-
ple, in a blocks world, the function on(b1, b2) would operate
on two block objects and return true when the state of b1 was
adjacent and above the state of b2. Although an OO-MDP
state is fully defined by the union of objects, these propo-
sitional functions provide additional high-level information
about the state. In this work, we use propositional functions
to define abstract task definitions. Note that although OO-
MDPs provide a rich state representation, any standard MDP
planning algorithm can be used for planning in an OO-MDP.

3 Approach
Our learning algorithm uses a generative model consisting
of task definitions, language, behavior, and trainer feedback.
Figure 1 shows a diagram of this model, with arrows indicat-
ing conditional probabilities. The next section will give an
overview of each part of the model, and present the overall
interactive learning algorithm used to learn the parameters
of the language model. Our running example is the simpli-
fied home environment shown in Figure 2.

S0 L T Si

C

Ai

Fi

M

E

N

Figure 1: A diagram of the generative model. Arrows in-
dicate conditional probabilities. Variables in the rectangle
repeat N times. The gray node is an input initial state of the
environment; yellow are task variables; red, language vari-
ables; and orange, behavior and trainer feedback variables.
L is the random variable for lifted tasks; T , grounded tasks;
C, variable binding constraints; M , machine commands; E,
English commands; Si, the ith state; Ai, the ith action; and
Fi, the ith feedback.

Task Model
The task model is defined by three components: lifted task
definitions (L), grounded task definitions (T), and variable
binding constraints (C). The set of possible lifted task def-
initions are provided by a designer and represent the kinds
of tasks an agent could conceivably carry out in an envi-
ronment. Specifically, each lifted task is a factored reward
function defined as a logical expression of OO-MDP propo-
sitional functions with the parameters of the propositional
functions set to free variables. For example, in the home
environment, one lifted task might be to take an object (re-
ferred to as “blocks”) to some room, which would be ex-
pressed as the reward function

R(s, a, s′) =
{

1 if blockInRooms′
(?o, ?r)

0 otherwise
, (1)

where s′ is the outcome state for the agent after taking ac-
tion a in state s, blockInRooms′

is a propositional function
evaluated in state s′, ?o is a free variable that can be ground
to any movable object in the environment, and ?r is a free
variable that can be ground to any room in the environment.

If a task is goal directed, then the reward function will
also be paired with a similar set of termination conditions.

The probability distribution of the set of lifted tasks is as-
sumed to be uniform over the set of lifted tasks that are per-
missible in an input state. A lifted task is permissible in an
input state if there exists at least one object of each object
class required by the free variables in the lifted task.

A grounded task (T) is dependent on the lifted task and
input state and is an assignment of objects in the input state
to each of the free variables in the lifted task. For example,

Figure 2: An example three room floor layout with one robot
and two chairs. The object reference for the red, green, and
blue room are r1, r2, and r3, respectively. The references
for the yellow and blue chair are c1 and c2, respectively.

given the input state shown in Figure 2, an object assignment
to lifted task 1 that represents the task of the robot taking the
yellow chair to the red room is ?o := c1 and ?r := r1. The
probability distribution of grounded tasks is uniform over
the set of possible variable assignments for the lifted task.

If all an agent could directly infer from a command was
the lifted task, it would be impossible for the agent to de-
termine which of the possible grounded tasks for an input
state was the intended task. Variable binding constraints (C)
are logical expressions that extend a lifted task and which
can be inferred from a command, enabling the agent to re-
solve grounding ambiguity. For example, we can infer from
the command “take the yellow chair to the red room,” that
the grounding of lifted task 1 should satisfy the constraints
isYellow(?o) ∧ isRed(?r).

The probability distribution of variable constraints given
a grounded task, lifted task, and input state is uniform across
the set of possible additional logical constraints that are true
in the input state for the given variable assignments in the
grounded task. For example, if ?o is assigned to c1 in the
grounded task, isYellow(?o), is a possible constraint since
it is true in the initial state for c1, but isBlue(?o) is not.

When the task model is paired with a language model
that is dependent on the lifted task and variable binding
constraints, Bayesian inference may be used infer the in-
tended grounded task, after which an agent can use standard
MDP planning techniques to determine behavior. Specif-
ically, if the language model defines the probability of an
English command, given a lifted task and variable binding
constraints (Pr(e|l, c)), then the probability of grounded task
t is computed by marginalizing over the lifted task (l) and
binding constraints (c); specifically,

Pr(t|e, s) ∝
∑

l

Pr(l|s) Pr(t|s, l)
∑

c

Pr(c|s, l, t) Pr(e|l, c),

where s is the initial input state.

Language Model
The language model we use is IBM Model 2 (Brown et al.
1990; 1993), a statistical machine translation model. In ma-
chine translation, the goal is to translate a sentence in a
source language (French) into a target language (English).
The model consists of translation parameters, giving the
probability (Pr(fi|ej)) of English word ej translating to
French word fi; and word alignment parameters, giving the
probability (Pr(j|i,m, k)) of the ith word in a French sen-
tence of length k corresponding to the jth word in an English
sentence of length m. Given a set of pairs of English and
French sentences, these parameters can be learned with Ex-
pectation Maximization (Dempster, Laird, and Rubin 1977).

In this work, we use the generative model to translate
from an English command e, to a lifted task and variable
binding constraints. Because IBM Model 2 is designed
to translate between sentences in different languages, the
lifted task and variable binding constraints are determinis-
tically transformed into a machine language string m. This
transformation iterates over each propositional function in
the lifted task and then each propositional function in the
variable binding constraints. Each propositional function is
turned into a sequence of tokens consisting of the name of
the propositional function and the object classes to which
each of its parameters are typed. For instance, lifted task 1
and variable binding constraints isYellow(c1)∧isRed(r1)
would become the machine string “blockInRoom block
room isYellow block isRed room.” Once converted into a
machine language string, IBM Model 2 can be used to com-
pute the probability (Pr(e|m)) of an English command e
given a machine command m. Translation in the reverse
direction is performed using Bayesian inference.

Trainer Feedback Model
The trainer feedback model assumes that a trainer will re-
ward, punish, or do nothing (neutral feedback), in response
to the agent taking a correct or incorrect action, with re-
spect to the task they are training. The model contains three
parameters: µ+, µ−, and ε. µ+ is the probability that the
trainer will give neutral feedback when a correct action is
taken, and µ− is the probability that they will give neutral
feedback when an incorrect action is taken. ε is the proba-
bility that the trainer will misinterpret a correct action as in-
correct, or vice-versa. Given an MDP, an action is assumed
to be correct if it is an optimal action for the MDP in the
current state, and incorrect otherwise. Therefore, the prob-
ability of the agent receiving reward (r), punishment (p), or
neutral feedback (∅) is defined as

Pr(f = r|s, a, t) =
{

(1− ε)(1− µ+) if a ∈ πt(s)
ε(1− µ+) if a /∈ πt(s)

Pr(f = p|s, a, t) =
{
ε(1− µ−) if a ∈ πt(s)
(1− ε)(1− µ−) if a /∈ πt(s)

Pr(f = ∅|s, a, t) =
{

(1− ε)µ+ + εµ− if a ∈ πt(s)
(1− ε)µ− + εµ+ if a /∈ πt(s)

,

where a is the action the agent took in state s and πt(s) is
the set of optimal actions in state s for task t. Given a new

Algorithm 1 Training Command Task Groundings

Input: OO-MDP \R and a set of lifted tasks L
Initialize IBM Model 2 parameters arbitrarily.
D ← {}
loop forever

Receive new Environment/State s0
Receive natural language command e
Pr(t)← Pr(t|e, so)
Plan policy πt ∀t ∈ T where Pr(t) > 0
t∗ ← arg maxt Pr(t)
s← s0
repeat

select and take action a ∈ πt∗(s)
receive feedback f and next state s′
Pr(t)← Pr(t|s, a, f)
t∗ ← arg maxt Pr(t)
s← s′

until Trainer terminates session
for m ∈M do

D ← D ∪ {(Pr(m|s,a, f , e),m, e)}
end for
Retrain IBM Model 2 Parameters on D

end loop

feedback signal, Bayesian inference can be used to update
the belief in each task. Specifically,

Pr(t|s, a, f) ∝ Pr(t) Pr(f |s, a, t).
This model is useful in practice because trainers may give

more reward than punishment (e.g., rewarding correct ac-
tions and doing nothing for incorrect actions), or vice-versa.
If the agent knows (or can learn) that the trainer gives more
reward or punishment (µ+ 6= µ−), then neutral feedback can
provide as much information as explicit feedback (Loftin
et al. 2014). Without knowing, however, it is best to set
µ+ = µ−, such that neutral feedback is ignored.

Learning Algorithm
Our learning algorithm is shown in Algorithm 1. The al-
gorithm takes as input an OO-MDP definition without the
reward function and the set of lifted tasks that the agent can
solve. The algorithm begins by initializing the IBM Model 2
parameters arbitrarily and creating an initially empty train-
ing dataset D. The algorithm then loops over successive
training sessions that begin with a new input state. Each
input state may have a different number of objects present,
with variable properties, which effectively makes each input
state a new environment. The agent is then given a natu-
ral language command e that the trainer wants the agent to
complete. Using the current IBM Model 2 parameters, the
prior over grounded tasks is updated to the posterior given
the command. The agent then uses any “off-the-shelf” MDP
planning algorithm to find the policy for each task. Next be-
gins a behavior loop in which the agent follows the policy
of the most likely grounded task, receives a feedback, up-
dates its belief in each grounded task, and switches to the
policy of the new most likely grounded task. This behav-
ior loop continues until the trainer terminates the session.

For each possible machine language command m, a train-
ing instance is added to dataset D. Each training instance
consists of the machine language command (m), the natu-
ral language command (e), and a weight that is the posterior
probability of m given the initial command e, and the state,
action, and feedback sequence observed during the last be-
havior loop. This probability is computed by marginalizing
over the lifted task, grounded task, and binding constraints:

Pr(m|s,a, f , e) ∝
∑
l,t,c

Pr(l|s) Pr(t|s, l) Pr(f |s,a, t)

Pr(c|s, l, t) Pr(m|l, c) Pr(e|l, c),

where Pr(f |s,a, t) is the probability of feedback sequence f ,
which is computed by treating each feedback as independent
of the other state-action-feedback triples in the sequence:

Pr(f |s,a, t) =
∏

i

Pr(fi|si, ai, t).

Finally, the IBM Model 2 parameters are retrained using the
updated dataset D. The training algorithm for IBM Model
2 is a weakly supervised Expectation Maximization (EM)
algorithm, as in prior work (MacGlashan et al. 2014), similar
to the classic EM algorithm for IBM Model 2, except that
the contribution of each data instance is weighted, as the
intended task must be inferred probabilistically.

4 Experimental Results
To test the model, we performed preliminary experiments
with a single trainer (one of the authors) training an agent in
the same simplified simulated home environment discussed
previously. The OO-MDP representing this domain consists
of four object classes: AGENT, ROOM, DOOR, and BLOCK.
The AGENT class is defined by x and y position attributes;
the ROOM class is defined by attributes defining the bound-
ing box of the room and the color the room is painted; the
DOOR class is defined by attributes defining its bounding
box; and the BLOCK class is defined by x and y position
attributes, a color attribute, and a shape attribute. The pos-
sible color values are red, green, blue, yellow, and purple;
the possible shapes are chair, bag, backpack, and basket
(though in these experiments only the chair and bag were
used). The agent can deterministically move one unit north,
south, east, or west and the agent can move blocks by mov-
ing into them. Propositional functions in the OO-MDP in-
clude propositional functions for checking if a block is a cer-
tain shape (e.g., shapeChair(BLOCK)), checking if a block
is a certain color (e.g., isRed(BLOCK), checking if a room
is painted a certain color, checking if the agent is in a room
(agentInRoom(AGENT, ROOM)), and checking if a block is in
a room (blockInRoom(BLOCK, ROOM)).

The possible lifted tasks given to the agent were a task
for taking a block to a room, as previously defined in Equa-
tion 1, as well as a task for going to a room, which is sim-
ilar in form except it uses the agentInRoom propositional
function. Because these tasks are goal directed, the corre-
sponding goal states were also terminating states. As this
domain is deterministic, uniform cost search was used for
planning. If the agent reached a terminating state for the

Figure 3: The GUI used to create environments, give com-
mands, and train the agent.

task it was completing, then it was forced to always take a
special “noop” action that did not change the state.

The training interface, shown in Figure 3, lets the trainer
create custom environments, give commands, and then in-
teractively reward and punish the agent. A training session
can be ended at any time with the choice of adding it to the
language model’s training dataset or ignoring it.

We chose a training sequence of environments/initial
states and commands to iteratively teach the agent about a
different property of the commands. The sequence of train-
ing environments are shown in Figures 4a to 4f (4g is only
used for testing after training in the former environments),
with environment 4a being used twice in a row and the rest
only used once.

The sequence of commands and the associated environ-
ment in which they were given are shown in Table 1. Note
that in the first four examples, the agent is told to go to a
different colored room with no other objects in the environ-
ment. This initial set of training commands is to train the
agent on the meaning of the room color words. In the fol-
lowing three commands, a single movable object is present,
which the agent is asked to take to a room. The first time, it’s
a blue chair, then a purple bag, and then a yellow bag. The
goal of this training sequence is that the agent should have
been given enough examples to disambiguate which words
refer to room color, block color, or block shape.

Table 1: Sequence of training commands and environments.

Command Given Associated Environment

1. go to the green room 4a
2. go to the red room 4a
3. go to the blue room 4b
4. go to the yellow room 4c
5. take the blue chair to the yellow room 4d
6. take the purple bag to the blue room 4e
7. take the yellow bag to the red room 4f

During each training session, the trainer employed a feed-

back strategy of giving reward and punishment intermit-
tently for correct and incorrect action selection. The trainer
feedback strategy parameters were set to values that reflect
this strategy (µ+ = 0.7, µ− = 0.7, and ε = 0.1). It is worth
noting that during training, the agent correctly interpreted
the command without any required reward or punishment
(though it was given anyway) for training commands 2, 5, 6,
and 7. For command 2, it was most likely luck that the agent
interpreted the command correctly since it had such limited
experience. Although the objects to move in instance 5, 6,
and 7 were novel, there was only one possible block to move,
which meant that to interpret the command correctly, all the
agent needed to know was that it was a block moving task
and which color room to take the block, which it should have
been able to determine from its previous experiences.

To test if the agent learned to properly associate words
with the relevant semantic components after the training pe-
riod, a single testing environment, shown in Figure 4g, was
used and after each test command in this environment, the
training session was completed without updating the lan-
guage model so that any new data did not contaminate the
results. Note that this environment is different from all for-
mer environments and includes a block shape and color pairs
not previously seen. Specifically, this environment included
a purple chair and a blue bag. If the language model associ-
ated words with the correct semantic components, however,
then the agent would be able to properly interpret the com-
mands. The test commands given are shown in Table 2. The

Table 2: Sequence of test commands, in environment 4g.

Test commands

1 take the purple chair to the green room
2 take the blue bag to the yellow room
3 go to the green room
4 go to the red room
5 go to the blue room

first two test commands test whether the agent was able to
properly disambiguate which block it was being requested
to move, even though the agent had never been asked to
move that specific kind of block. The last three test sen-
tences were designed to test whether the agent still under-
stood commands to go to rooms, even in the presence of
novel objects. The agent correctly interpreted the test com-
mand in all cases.

Another way to gain insight into what the agent learned
is to examine the translation parameters of IBM Model 2
after training is completed. Although there is not space to
list all the parameters, we provide some interesting exam-
ples here. The machine language word “agentInRoom” was
most likely to generate the English word “go” (with proba-
bility 0.51); “shapeBag” was most likely to generate “bag”
(probability 0.32); “roomIsRed” was most likely to gener-
ate “red” (probability 0.33); and “blockInRoom” was most
likely to generate the word “take” (probability 0.33).

As a final test to demonstrate the utility of modeling dif-
ferent feedback strategies, this same experiment was rerun,
except the trainer was only allowed to punish the agent. To

(a) Train 1-2 (b) Train 3 (c) Train 4 (d) Train 5 (e) Train 6 (f) Train 7 (g) Test 1-5

Figure 4: The training evnrionments (a-f) and test environment (g).

reflect this change in strategy, the the trainer feedback model
parameters were changed accordingly1 (µ+ = 0.7, µ− =
0.05). During training, the agent only incorrectly interpreted
commands one and three, which means for the remaining
training sessions, the trainer provided no explicit feedback
at all. Despite this lack of explicit feedback, when coupled
with the feedback strategy model parameters, the agent was
still able to learn the command groundings. On the test com-
mands, the agent correctly interpreted test commands 1-4.
The agent did misinterpret test command 5, but switched to
the correct behavior after a single punishment.

5 Related Work
The most similar work to ours is work that learns com-
mand groundings from demonstrations in the world, rather
than using annotated text. For example, previous work that
investigates grounding commands from demonstration in-
cluded work on giving navigational instructions (Vogel and
Jurafsky 2010; Chen and Mooney 2011; Grubb et al. 2011),
giving action commands to a robot (Duvallet, Kollar, and
Stentz 2013; Tellex et al. 2011; 2014), controlling software
(Branavan et al. 2009; Branavan, Zettlemoyer, and Barzi-
lay 2010) and playing games (Goldwasser and Roth 2011;
Branavan, Silver, and Barzilay 2011). Two critical differ-
ences between this body of work and ours is (1) that our
work aims to ground language to task descriptions that do
not require the human to tell the agent how to complete the
task and (2) our learning algorithm grounds language from
online reward and punishment delivered by a human.

Two related approaches to training an agent with human
reward and punishment are TAMER (Knox and Stone 2009)
and COBOT (Isbell et al. 2001). In these algorithms, human
feedback is modeled as a reward function which is then used
in a typical reinforcement learning algorithm. One disadvan-
tage to this approach is that it cannot make use of different
training strategies employed by the trainer; additionally, the
modeled reward function is highly dependent on each state
in the state space, which does not capture an overall task
definition that can easily be connected with language.

Other related work focuses on how to learn the behavior,
rather than identify the task that needs to be completed. Ryb-
ski et al. (2007) propose a method to train a robot to com-
plete novel tasks from demonstrations that incorporate lan-
guage with a priori grounded utterances. Tenorio-Gonzalez
et al. (2010) use language to shape an already known re-

1Alternatively, these parameters could be learned online using
the I-SABL algorithm (Loftin et al. 2014).

ward function. Hewlett et al. (2010) learn the behavior of
specified verb phrases as abstract finite state machines. Fu-
ture work could incorporate such approaches to reduce the
computational complexity of planning.

6 Conclusions
We proposed a learning algorithm for grounding natural lan-
guage commands to high-level task definitions from online
human-delivered reward and punishment. Grounding com-
mands to high-level task definitions is especially useful be-
cause it enables the human to convey tasks to an agent with-
out having to tell the agent how to carry it out. As a result,
the same command can be given in a variety of different
states/environments and the agent will autonomously deter-
mine how to carry out the task in each of them. Training
with reward and punishment has the advantage that it does
not require technical expertise in manually controlling the
agent to provide demonstrations.

We presented preliminary results of a single user interac-
tively training an agent in a simplified simulated home en-
vironment and demonstrated that after only a few examples
the agent was able to correctly interpret novel commands. In
the future, we will perform a user study to assess how well
the system handles the kind of variable language and feed-
back that would be provided by novice users who do not
understand the underlying system.

A limitation of our approach is that the agent must plan
for every possible task that could be performed in the envi-
ronment. As environments get more complex and more tasks
are possible, this will become intractable. In the future, we
would like to explore sampling methods to reduce the space
of tasks considered and couple that with “scaffolding” where
initially training with simple environments allows the agent
to easily learn word groundings, and therefore allows the
agent to focus on the most likely task groundings for a com-
mand in more complex environments.

In this work, we focused on providing the agent no
background language knowledge, since being able to learn
without any background language knowledge reduces the
amount of work required by a designer. However, in prac-
tice, background language knowledge could be incorporated
to further accelerate learning. For example, a dictionary
could be used to generalize the grounding of one observed
word to its synonyms. Additionally, if certain words were
known to correspond to colors, then they could similarly
have their translation probabilities biased toward being gen-
erated by color propositional functions.

7 Acknowledgements
This work was supported in part by NSF IIS-1149917 and
NSF IIS-1319412.

References
Branavan, S. R. K.; Chen, H.; Zettlemoyer, L. S.; and Barzi-
lay, R. 2009. Reinforcement learning for mapping instruc-
tions to actions. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Processing of
the AFNLP: Volume 1 - Volume 1, ACL ’09.
Branavan, S.; Silver, D.; and Barzilay, R. 2011. Learning
to win by reading manuals in a monte-carlo framework. In
Association for Computational Linguistics (ACL 2011).
Branavan, S.; Zettlemoyer, L. S.; and Barzilay, R. 2010.
Reading between the lines: Learning to map high-level in-
structions to commands. In Association for Computational
Linguistics (ACL 2010).
Brown, P. F.; Cocke, J.; Pietra, S. A. D.; Pietra, V. J. D.;
Jelinek, F.; Lafferty, J. D.; Mercer, R. L.; and Roossin, P. S.
1990. A statistical approach to machine translation. Comput.
Linguist. 16(2):79–85.
Brown, P. F.; Pietra, V. J. D.; Pietra, S. A. D.; and Mercer,
R. L. 1993. The mathematics of statistical machine trans-
lation: Parameter estimation. Comput. Linguist. 19(2):263–
311.
Chen, D. L., and Mooney, R. J. 2011. Learning to interpret
natural language navigation instructions from observations.
In Proceedings of the 25th AAAI Conference on Artificial
Intelligence (AAAI-2011)., 859–865.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maxi-
mum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society 39(1):1–38.
Diuk, C.; Cohen, A.; and Littman, M. 2008. An object-
oriented representation for efficient reinforcement learning.
In Proceedings of the Twenty-Fifth International Conference
on Machine Learning.
Duvallet, F.; Kollar, T.; and Stentz, A. T. 2013. Imitation
learning for natural language direction following through
unknown environments. In IEEE International Conference
on Robotics and Automation (ICRA).
Goldwasser, D., and Roth, D. 2011. Learning from natural
instructions. In Proceedings of the Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence.
Grubb, A.; Duvallet, F.; Tellex, S.; Kollar, T.; Roy, N.;
Stentz, A.; and Bagnel, J. A. 2011. Imitation learning for
natural language direction following. In Proceedings of the
ICML Workshop on New Developments in Imitation Learn-
ing.
Hewlett, D.; Walsh, T. J.; and Cohen, P. R. 2010. Teach-
ing and executing verb phrases. In Proceedings of the First
Joint IEEE International Conference on Development and
Learning and on Epigenetic Robotics (ICDL-Epirob-11).
Isbell, C.L., J.; Shelton, C.; Kearns, M.; Singh, S.; and
Stone, P. 2001. A social reinforcement learning agent. 377
– 384.

Knox, W. B., and Stone, P. 2009. Interactively shaping
agents via human reinforcement: The tamer framework. 9 –
16.
Loftin, R.; MacGlashan, J.; Littman, M.; Taylor, M.; and
Roberts, D. 2014. A strategy-aware technique for learning
behaviors from discrete human feedback. In Proceedings of
the 28th AAAI Conference on Artificial Intelligence (AAAI-
2014).
MacGlashan, J.; Babeş-Vroman, M.; desJardins, M.;
Littman, M.; Muresan, S.; and Squire, S. 2014. Translat-
ing english to reward functions. Technical Report CS14-01,
Computer Science Department, Brown University.
Rybski, P. E.; Yoon, K.; Stolarz, J.; and Veloso, M. M.
2007. Interactive robot task training through dialog and
demonstration. In Human-Robot Interaction (HRI), 2007
2nd ACM/IEEE International Conference on, 49–56. IEEE.
Tellex, S.; Kollar, T.; Dickerson, S.; Walter, M.; Banerjee,
A. G.; Teller, S.; and Roy, N. 2011. Understanding nat-
ural language commands for robotic navigation and mobile
manipulation. In Proceedings of the Twenty-Fifth AAAI Con-
ference on Articifical Intelligence.
Tellex, S.; Thaker, P.; Joseph, J.; and Roy, N. 2014. Learn-
ing perceptually grounded word meanings from unaligned
parallel data. Machine Learning 94(2):205–232.
Tenorio-Gonzalez, A. C.; Morales, E. F.; and Villaseñor-
Pineda, L. 2010. Dynamic reward shaping: training a robot
by voice. In Advances in Artificial Intelligence–IBERAMIA
2010. 483–492.
Vogel, A., and Jurafsky, D. 2010. Learning to follow nav-
igational directions. In Association for Computational Lin-
guistics (ACL 2010).

